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A B S T R A C T

Humans are constantly exposed to airborne pollutants such as pollen, exhaust residues, microplastics, fabrics,
aerosols, or, as recently, ash particles from volcanic eruptions, which are rarely perfectly spherical. In order
to reduce the impact of harmful particles or, on the contrary, to improve the targeted delivery of drugs,
understanding the motion of complex shaped particles in fluid flows is of key interest. Common models
mainly use shape factors to account for deviations from spherical shape, but these often fail to accurately
predict particle motion. We advocate a more accurate modeling of complex particles by a superellipsoidal
shape approximation, which allows covering a wide range of particle geometries. Superellipsoidal particle
shapes allow for a novel approximation of translational and rotational resistance tensors, derived based on data
from dedicated DNS computations. Our surrogate approach for convex bodies (𝜖1, 𝜖2 ∈ (0, 2)), implemented
in OpenFOAM® based on Lagrangian particle tracking, is first validated based on experimental and in-silico
results from the literature, followed by a comparison of the effects of non-sphericity for some well known fluid
flow cases, such as a lid-driven cavity (validated for Re = 470, St = 0.0023), pipe flow (validated for 𝑅𝑒 = 137,
St = 0.01) and a simplified bifurcation (validated for Re = 500, 𝑆𝑡 = 0.5 × 10−2 − 0.5). We show that using
shape factor assisted spherical or ellipsoidal approximations of the particles leads to insufficient accuracy of
computation of the particle’s trajectory, whereas the newly derived superellipsoidal drag and torque models
proved to provide a superior accuracy of the Lagrangian particle tracking over simplified non-spherical particle
approximations.
1. Introduction

Most man-made and naturally occurring particles such as fibers,
blood cells, pollen and microplastics are rarely perfectly spherical.
As Feng and Kleinstreuer (2013) stated, fluid–particle dynamics are
affected by the size, density, and shape of the particle under considera-
tion, as well as the interaction between the particle and the surrounding
geometry. Besides, the authors found that arbitrarily shaped particles
exhibit complex dynamics due to shape anisotropy and therefore ro-
tational motions must be considered, (Feng and Kleinstreuer, 2013).
However, in various references, the particles are assumed to be spher-
ical, (Koullapis et al., 2017, 2016). Exemplarily, this simplification
holds for sufficiently small aerosols as they behave rigidly and form
a spherical shape due to their high surface tension, (Balachandar et al.,
2020; Wedel et al., 2021a,b, 2022). Nevertheless, there are several
applications where this assumption no longer applies, such as the
motion and deposition of fibers, (Dastan et al., 2014), or pollen parti-
cles, (Inthavong et al., 2021). In particular, elongated particles such as
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asbestos fibers tend to align with the airflow, resulting in a significantly
deviating trajectory compared to a sphere of the same volume, (Feng
and Kleinstreuer, 2013). In this context, Su and Cheng (2006) con-
jectured that inhalation of elongated rather than spherical particles
poses a higher risk to the respiratory tract as they can penetrate deeper
into the airways, (Su and Cheng, 2006). These examples underline
that the assumption of spherical particles is only justified in isolated
applications.

The most commonly employed non-spherical particle shape is el-
lipsoidal, called prolate if its two smaller semi-axes are equal in size
and oblate if its two major semi-axis are equal. In in silico studies,
prolate and oblate ellipsoids are commonly considered due to the
fact that they possess no geometric discontinuity and are therefore
denoted as mathematically-treatable, (Saccone et al., 2022), see the
excellent review of Voth and Soldati (2017). As stated by Voth and
Soldati (2017), the point-particle approach is applicable if the particle
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size is smaller than the Kolmogorov length scale. Furthermore, the
authors stated that particle inertia is usually negligible if the Stokes
number is much smaller than one. It is also known that if the particle
shape deviates from a perfect sphere, the interactions between fluid
and particle are affected, since non-sphericity results in specific drag
characteristics, (Voth and Soldati, 2017).

In general, ellipsoids are typically used to model fiber-like shapes,
(Feng and Kleinstreuer, 2013; Belka et al., 2017). There are a number
of experimental and numerical studies of the transport of ellipsoids
for basic shear flows, i.e. Couette and Poiseuille flows. Jeffery (1922)
investigated prolate ellipsoids in linear shear flows and found that the
rotational period of the particles is related to the particle aspect ratio
and the shear rate of the flow. In addition, Gallily and Eisner (1979)
studied elongated particles in a 2D Poiseuille flow both theoretically
and experimentally.

Zhang et al. (2001) were one of the first to numerically study
ellipsoidal particles in turbulent channel flow while employing the
point-particle approach. The authors studied the effect of particle as-
pect ratio and inertia on preferential concentration as well as wall
accumulation. Furthermore, Tian et al. (2012) studied the motion of
ellipsoidal particles and their deposition efficiency in a pipe flow. The
authors found that the aspect ratio, the shear rate of the flow, and
the ratio of particle to fluid density alter the particle motion, (Tian
et al., 2012). In addition, Högberg et al. (2008) investigated the
influence of Brownian motion on prolate ellipsoids of submicron size.
Moreover, Feng and Kleinstreuer (2013) focused on the computational
analysis of ellipsoids with varying aspect ratios and studied both stable
and unstable rotational periods in tubular flows. Besides, several studies
showed that fiber-like particles experience a preferential alignment
with the mean flow direction within the near-wall region, however, in
the core of the flow no such alignment is observed and the resulting
orientations are more uniform, (Challabotla et al., 2016; Arcen et al.,
2017). Furthermore, Cui et al. (2018a,b, 2019b) proposed a lift model
to determine the lift forces acting on fibers, i.e. prolate ellipsoidal
particles, in arbitrary nonuniform flows. In addition, Cui et al. (2019a)
studied sludge flocs and proposed an advanced Lagrangian particle
tracking approach that is able to account for non-spherical shapes,
internal porosity and permeability as well as inhomogeneous mass
distribution.

Recently, Zhang et al. (2020) performed particle-resolved bedload
simulations for spherical and non-spherical particles in laminar and
turbulent open channel flows. These authors showed that the onset of
motion was directly influenced by the shape of the sediment particles.
In addition, Jain et al. (2021) conducted simulations of bedload trans-
port in open channels and studied particles of oblate, prolate, triaxial
and spherical shapes. The authors found that the use of non-spherical
shapes resulted in significant differences in particle motion compared to
spherical shape, with prolate ellipsoids showing the strongest tendency
to form clusters in the spanwise direction. Considering the results
of Zhang et al. (2020) and Jain et al. (2021), Saccone et al. (2022)
concluded that the tendency to orient in a preferred direction near
a wall is a characteristical behavior of non-spherical particles. Fur-
thermore, Michel and Arcen (2021) used direct numerical simulation
(DNS) to study the dynamics of prolate ellipsoids in a turbulent channel
flow. The authors investigated the effect of Reynolds number Re on
he preferred particle orientation and concentration and found that as
he friction Reynolds number Re𝜏 increases, the distribution approaches
niformity, with particle inertia having a notable and particle aspect
atio having a minor effect. In addition, Cui et al. (2021) studied the
lignment of fiber- and disk-shaped particles in near-wall turbulence
n a channel flow. The authors observed the presence of three pre-
erred alignment patterns that the considered particles can form around
nsemble-averaged vortices. More recently, Saccone et al. (2022) stud-
ed the effects of wall roughness on prolate particles in a turbulent
hannel flow. These authors showed that accounting for wall roughness
2

esulted in a more homogeneous particle distribution in the direction
of the wall normal. In addition, the authors observed that particle
elongation affected the preferred orientation, but less pronounced in
the near-wall region than for smooth walls.

Besides, there are several experimental, (Belka et al., 2016; Myojo,
1987, 1990; Myojo and Takaya, 2001; Marijnissen et al., 1991; Su
and Cheng, 2006; Okabe et al., 1997), and numerical studies, (Feng
and Kleinstreuer, 2013; Belka et al., 2017), that have investigated the
motion of ellipsoidal particles in complex geometries, such as human
lung replicas. Recently, Lizal et al. (2022) experimentally studied
the motion of glass fibers in a first airway bifurcation replica and
provided important measurements to improve numerical simulations
of fiber motion in human lungs. In fact, ellipsoidal particle models are
often inadequate to reproduce realistic particle motion, see for example
asbestos-like fibers as presented by Ravnik et al. (2022). The authors
showed that the Stokes flow-induced drag and torque of asbestos-like
fibers cannot be sufficiently reproduced by using an ellipsoidal shape
approximation.

In general, for simplified particle shapes such as spheres or elon-
gated ellipsoids the forces and torques can be determined analyti-
cally, (Jeffery, 1922; Brenner, 1964a). However, no such equations
exist for arbitrarily shaped particles. Consequently, to account for non-
spherical particles, various drag correlations have been proposed, (Hölze
and Sommerfeld, 2008; Wang et al., 2018; Bagheri and Bonadonna,
2016). Besides, lift and torque correlations have been introduced, how-
ever, solely for special shapes such as oblate ellipsoids or fibers, (San-
jeevi et al., 2018; Zastawny et al., 2012; Tian et al., 2012; Tian and
Ahmadi, 2013). Nevertheless, in Štrakl et al. (2022a) we showed that
these correlations are often insufficient to accurately reproduce the
translational, rotational, and deformational particle resistance tensor.
Moreover, we proposed a novel framework for predicting drag and
torque of superellipsoidal particles by performing a large number
of direct numerical simulations (DNS) of particles in Stokes flow.
We showed that this framework enables accurate modeling for an
unprecedented variety of particle shapes.

Although a few studies have been conducted for specific non-
spherical particles such as rod-shaped or ellipsoidal fibers, (Cui et al.,
2018a,b, 2019b; Fennelly, 2020; Belka et al., 2017), systematic re-
search on a broad range of non-spherical particles is relatively sparse
due to the experimental challenges in generating corresponding par-
ticles with a specific geometry, (Wu et al., 2021). In this context,
superellipsoidal particles represent an opportunity to gain further in-
sight into the motion and deposition of a wide variety of particle shapes
and allows for an improved modeling of arbitrarily shaped particle
dynamics.

This study focuses on the analysis of motion and deposition of
particles with superellipsoidal shape. To this end, we present our novel
superellipsoid particle tracking developed in OpenFoam® and based on
Lagrangian particle tracking. The approach employs the superellipsoid
surrogate approach proposed in our previous work, see Štrakl et al.
(2022a,b). In the scope of this study, we compare the motion and
deposition of different particle shapes, including spheres, ellipsoids
and superellipsoids, fitted to a naturally occurring pollen particle. We
obtained good agreement between the novel superellipsoid particle
tracking solver and numerical and experimental studies that used spher-
ical and ellipsoidal shapes. In general, we found a strong correlation
between the shape of the particles and the resulting particle motion.
Moreover, spherical (with and without shape factors) and prolate ellip-
soidal shape approximations in particular were found to be insufficient
to reproduce the trajectory and especially the rotational motion of a
realistic particle such as the pollen replica considered. This is related to
the resulting deviations in translation, rotation, and deformation tensor
coefficients, which result in altered particle motion compared to the
superellipsoidal reference shape. In case of the prolate ellipsoid, this
lead to an extended time of passing through the flow-aligned orienta-
tion, i.e. where the particle long axis is aligned with the streamwise

direction.
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Fig. 1. Sketch of a representative set of superellipsoidal particles, with 𝜆1 > 𝜆2.
Including schematic particle frame of reference (pFoR).

The paper is organized as follows: In Section 2, the novel superellip-
soid particle force and torque model is introduced along with the novel
deposition model. Moreover, in Section 3, the superellipsoid particle
tracking is validated and applied to common cases, such as a lid-driven
cavity flow and a simplified bifurcation. Finally, Section 4 summarizes
the paper and presents the main conclusions.

For the notation of tensors and their corresponding coefficient
matrices in various frames of references we refer to Cui et al. (2018a,b,
2019b).

2. Superellipsoids

2.1. General description of superellipsoid particles

Superellipsoidal particles, as introduced by Barr (1981), allow the
modeling of particles with a more complex shape than spheres or
ellipsoids. According to Barr (1981), superellipsoids can be described
by the so-called inside-outside function:

𝑆(𝑟′) =

[

[

𝑥′

𝑎

]2∕𝜖2
+
[

𝑦′

𝑏

]2∕𝜖2
]𝜖2∕𝜖1

+
[

𝑧′

𝑐

]2∕𝜖1
, (1)

which is written in the particle frame of reference (pFoR). Any position
𝑟′ = [𝑥′, 𝑦′, 𝑧′] with 𝑆(𝑟′) ≤ 1 belongs to the superellipsoid with 𝑆(𝑟′) =
1 describing the particle surface. The parameters 𝑎, 𝑏, 𝑐 in Eq. (1)
determine the dimensions of the superellipsoid, while the exponents
𝜖1 and 𝜖2 indicate the squareness of the shape in the 𝑥′ or 𝑦′ plane and
𝑧′ direction, respectively. Note that 𝜖𝑖 ∈ (0, 2) represents a convex body
bounded by a cuboid (𝜖𝑖 → 0) and an octahedron (𝜖𝑖 → 2), (Wellmann
et al., 2008). Commonly, the superellipsoid particle is described by the
aspect ratio, i.e. 𝜆1 = 𝑎∕𝑐, 𝜆2 = 𝑏∕𝑐. In the context of our model,
we employ the following conventions: 𝑎 ≥ 𝑏 ≥ 𝑐 and followingly
𝜆1 ≥ 𝜆2 ≥ 1.

Furthermore, the volume of a superellipsoidal particle can be writ-
ten as (Jaklič et al., 2000):

𝑉 = 2𝑎𝑏𝑐𝜖1𝜖2𝐵
( 𝜖1
2

+ 1, 𝜖1
)

𝐵
( 𝜖2
2
,
𝜖2
2

)

, (2)

where 𝐵 is related to the Gamma function as follows (Jaklič et al.,
2000):

𝐵 (𝑥, 𝑦) =
𝛤 (𝑥)𝛤 (𝑦)
𝛤 (𝑥 + 𝑦)

. (3)

Fig. 1 shows a set of representative convex superellipsoidal particles
with 𝜆1 > 𝜆2 to illustrate the wide variety of geometries that can
be obtained by applying the superellipsoid formulation. Note that the
superellipsoid formulation includes prolate ellipsoids, see Fig. 1 𝜖1 =
𝜖 = 1.0, as well as spherical particles when 𝜆 = 𝜆 = 𝜖 = 𝜖 = 1.
3

2 1 2 1 2
2.2. Equation of motion for superellipsoidal particles

2.2.1. Dynamics of translational motion
In general, the trajectory of a particle is determined by its inter-

action with the surrounding fluid flow. For sufficiently small particles,
e.g. in the micro- and submicron range, the particles can be described as
rigid, i.e. their deformation is considered negligible. In this work, par-
ticle transport is described in an Euler–Lagrangian framework. Maxey
and Riley (1983) proposed the equation of motion for small rigid
particles. Furthermore, Brenner (1964b) presented the drag expression
for arbitrary shaped particles. Followingly, we write (Maxey and Riley,
1983; Brenner, 1964b):

𝑚𝑝
𝑑𝒗
𝑑𝑡

= 𝒈𝑉𝑝
[

𝜌𝑝 − 𝜌𝑓
]

+𝑉𝑝𝜌𝑓
𝐷𝒖
𝐷𝑡

− 1
2
𝑉𝑝𝜌𝑓

[𝑑𝒗
𝑑𝑡

− 𝑑𝒖
𝑑𝑡

]

+𝜋𝜌𝑓 𝜈𝑓 𝑐𝑲 ⋅[𝒖 − 𝒗] ,

(4)

using the superellipsoidal surrogate approach as presented in Štrakl
et al. (2022a). Eq. (4) considers gravity, buoyancy, pressure gradient,
added mass and drag force, while neglecting the time history effects,
aerodynamic lift as well as higher order terms, (Cui et al., 2018b). Here
𝒗, 𝑚𝑝, 𝑉𝑝, 𝑐, 𝜌𝑝, denotes the particle velocity, mass, volume, smallest
particle half axis and density, respectively. Note that 𝑉𝑝 = 𝑑3𝑒𝑞𝜋∕6,
see Eq. (2), is used to obtain the volume equivalent diameter of a
sphere 𝑑𝑒𝑞 . Besides, 𝒖, 𝜌𝑓 , 𝜈𝑓 label the fluid velocity, fluid density and
kinematic viscosity. In addition, 𝑲 is the translational resistance tensor.
Note that in Eq. (4), 𝐷∕𝐷𝑡 = 𝜕∕𝜕𝑡+ [𝒖 ⋅𝛁] describes the time derivative
following the fluid element, while 𝑑∕𝑑𝑡 = 𝜕∕𝜕𝑡 + [𝒗 ⋅ 𝛁] represents
the time derivative following the Lagrangian particle. The drag force
𝑭𝐷 exerted on a superellipsoidal particle moving in a fluid is obtained
using (Štrakl et al., 2022a):

𝑭𝐷 = ∫𝛤
𝒕𝑑𝛤 = 𝜋𝜌𝑓 𝜈𝑓 𝑐𝑲 ⋅ [𝒖 − 𝒗] , (5)

where 𝒕 = 𝝈 ⋅𝒏 denotes the boundary traction. To relate the coefficients
𝐊 and 𝐊′ of the resistance tensor in the inertial (iFoR) and in the
particle frame of reference (pFoR), the rotation matrix 𝐑 is used:

𝐊 = 𝐑𝑇 𝐊′ 𝐑 . (6)

To estimate the importance of the different force terms presented in
Eq. (4), we rewrite Eq. (4) in non-dimensional form using 𝐿0 and 𝑢0,
which denote the characteristic scales of the problem and fluid velocity,
respectively, (Cui et al., 2018b). Using the non-dimensional parameters
𝒗∗ = 𝒗∕𝑢0, 𝒖∗ = 𝒖∕𝑢0, 𝑡∗ = 𝑡𝑢0∕𝐿0 we write:

𝑑𝒗∗
𝑑𝑡∗

= 𝐴
St

[

𝒗∗𝑠 +
𝑐

3𝑑𝑒𝑞
𝑲 ⋅

[

𝒖∗ − 𝒗∗
]

]

+3
2
𝑅𝜕𝒖

∗

𝜕𝑡∗
+𝑅

[[

𝒖∗ + 1
2
𝒗∗

]

⋅ 𝛁
]

𝒖∗ . (7)

Moreover, we can separate the spherical and non-spherical contri-
butions to the drag and write:

𝑑𝒗∗
𝑑𝑡∗

= 𝐴
St

[

𝒗∗𝑠 +
[

𝒖∗ − 𝒗∗
]

+
[

𝑐
3𝑑𝑒𝑞

𝑲 − 𝑰
]

⋅
[

𝒖∗ − 𝒗∗
]

]

+ 3
2
𝑅𝜕𝒖

∗

𝜕𝑡∗
+ 𝑅

[[

𝒖∗ + 1
2
𝒗∗

]

⋅ 𝛁
]

𝒖∗ , (8)

where 𝑰 denotes the identity tensor. Using the non-dimensional
Eq. (7)–(8) it can be seen that the importance of gravity and drag
force scale with the factor 𝐴∕St, while the pressure gradient and
added mass term scale with the factor 𝑅, (Cui et al., 2018b). In this
context, the nondimensional parameters 𝐴 and 𝑅 are depending on the
fluid–particle ratio and are obtained as follows (Cui et al., 2018b):

𝑅 =
𝜌𝑓

𝜌𝑝 + 0.5𝜌𝑓
, 𝐴 =

𝜌𝑝
𝜌𝑝 + 0.5𝜌𝑓

. (9)

In addition, St denotes the Stokes number, which describes the ratio
of the characteristic particle response time 𝜏𝑝 to a characteristic time
of the flow 𝜏𝑓 . The Stokes number of a particle with volume equivalent
sphere diameter 𝑑𝑒𝑞 is obtained as follows:

St =
𝜏𝑝 =

𝜌𝑝 𝑑2𝑒𝑞𝑢0 . (10)

𝜏𝑓 𝜌𝑓 18𝜈𝑓𝐿0



International Journal of Multiphase Flow 158 (2023) 104283J. Wedel et al.

b

𝜏

N
n

(

R

w
𝒗
t
p
t
1

𝒗

f

𝑇

𝑇

p
𝑇

𝐼

w
a
a
r
g

𝑓
]

,

]

.

c

𝐞

a
T

𝐑

a
e
𝛀
r
c
d
r

m
𝐊
n
f
𝑝
a

a
s
a

The characteristic time scales of the particle 𝜏𝑝 and the flow 𝜏𝑓 are given
y:

𝑝 =
𝜌𝑝
𝜌𝑓

𝑑2𝑒𝑞
18𝜈𝑓

, 𝜏𝑓 =
𝐿0
𝑢0

. (11)

ote that the pressure gradient and added mass force can be considered
egligible compared to the reduced gravity and drag force if 𝜌𝑝 ≫ 𝜌𝑓

and thus 𝑅 ≪ 1, see Eq. (9), (Cui et al., 2018b). However, even if
𝜌𝑝 ≈ 𝜌𝑓 , the impact of the additional forces can be considered minor
compared to 𝑭𝐺𝐵 and 𝑭𝐷 if the Stokes number is sufficiently small
St ≪ 1) and consequently 𝐴∕St ≫ 1, see Eq. (9)–(10).

The particle Reynolds number is defined as follows:

e𝑝 =
𝑑𝑒𝑞|𝒖𝑟𝑒𝑙|
𝜈𝑓

, (12)

here 𝒖𝑟𝑒𝑙 = 𝒖 − 𝒗 denotes the relative velocity between the particle
and the fluid 𝒖. The terminal velocity of a particle is reached when

he sum of the flow-induced frictional and the buoyant forces on the
article balances the gravitational force 𝑭𝐷. In case of a spherical par-
icle settling in Stokes flow the terminal velocity 𝒗𝑇 is given by (Lamb,
994):

𝑇 =
𝑑2𝑒𝑞
18𝜈𝑓

𝜌𝑝 − 𝜌𝑓
𝜌𝑓

𝒈 . (13)

The kinematics of translational motion is given by:

⎡

⎢

⎢

⎣

𝑑𝑥∕𝑑𝑡
𝑑𝑦∕𝑑𝑡
𝑑𝑧∕𝑑𝑡

⎤

⎥

⎥

⎦

= 𝐯 , (14)

where the particle velocity is denoted as 𝐯 and the particle position as
𝐱 = [𝑥, 𝑦, 𝑧]𝑇 .

2.2.2. Dynamics of rotational motion
The rotational motion of an arbitrarily shaped particle moving in a

luid can be described in the pFoR as follows:

𝑥′ = 𝐼𝑥′
𝑑 𝜔𝑥′
𝑑𝑡

− 𝜔𝑦′𝜔𝑧′
[

𝐼𝑦′ − 𝐼𝑧′
]

, (15)

𝑦′ = 𝐼𝑦′
𝑑 𝜔𝑦′
𝑑𝑡

− 𝜔𝑧′𝜔𝑥′
[

𝐼𝑧′ − 𝐼𝑥′
]

, (16)

𝑇𝑧′ = 𝐼𝑧′
𝑑 𝜔𝑧′
𝑑𝑡

− 𝜔𝑥′𝜔𝑦′
[

𝐼𝑥′ − 𝐼𝑦′
]

, (17)

where 𝐼𝑥′ , 𝐼𝑦′ , 𝐼𝑧′ are the particle moments of inertia about the princi-
al axes (the principal values of the particle’s inertia tensor). Moreover,
𝑥′ , 𝑇𝑦′ , 𝑇𝑧′ and 𝜔𝑥′ , 𝜔𝑦′ , 𝜔𝑧′ denote the hydrodynamic torques on the

particle and the particle angular velocities with respect to the principal
axes. The moments of inertia for a superellipsoidal particle can be
obtained as follows (Jaklič et al., 2000):

𝐼𝑥′ =
1
2
𝜌𝑎𝑏𝑐𝜖1𝜖2

[

𝑏2𝐵
(

1.5𝜖2,
𝜖2
2

)

𝐵
( 𝜖1
2
, 2𝜖1 + 1

)

+ 4𝑐2𝐵
( 𝜖2
2
,
𝜖2
2

+ 1
)

𝐵
(

1.5𝜖1, 𝜖1 + 1
)

]

, (18)

𝐼𝑦′ =
1
2
𝜌𝑎𝑏𝑐𝜖1𝜖2

[

𝑎2𝐵
(

1.5𝜖2,
𝜖2
2

)

𝐵
( 𝜖1
2
, 2𝜖1 + 1

)

+ 4𝑐2𝐵
( 𝜖2
2
,
𝜖2
2

+ 1
)

𝐵
(

1.5𝜖1, 𝜖1 + 1
)

]

, (19)

𝑧′ =
1
2
𝜌𝑎 𝑏 𝑐 𝜖1 𝜖2

[

𝑎2 + 𝑏2
]

[

𝐵
(

1.5 𝜖2,
𝜖2
2

)

𝐵
( 𝜖1
2
, 2 𝜖1 + 1

)]

. (20)

Taking both rotational and shear flow contributions into account, the
torque can be expressed as (Štrakl et al., 2022a):

𝑻 = ∫𝛤
𝒓 × 𝒕𝑑𝛤 =̂ 𝜋𝜇𝑐3

⎡

⎢

⎢

𝚷′
⎡

⎢

⎢

𝑓 ′

𝑔′
′

⎤

⎥

⎥

+𝛀′
⎡

⎢

⎢

𝜉′ − 𝜔𝑥′
𝜂′ − 𝜔𝑦′
′

⎤

⎥

⎥

⎤

⎥

⎥

, (21)
4

⎣ ⎣ℎ ⎦ ⎣𝜒 − 𝜔𝑧′⎦⎦ 𝑓
here 𝛀′ is the coefficient matrix of the rotation resistance tensor
nd 𝚷′ the coefficient matrix of the deformation resistance tensor. In
ddition, 𝑓 ′, 𝑔′, ℎ′ denote the off-diagonal elements of the deformation
ate tensor and 𝜉′, 𝜂′ and 𝜒 ′ are spin tensor components, which are
iven by

′ =1
2

[

𝜕𝑢𝑧′
𝜕𝑦

+
𝜕𝑢𝑦′
𝜕𝑧

]

, 𝑔′ =1
2

[

𝜕𝑢𝑥′
𝜕𝑧

+
𝜕𝑢𝑧′
𝜕𝑥

]

, ℎ′ =1
2

[

𝜕𝑢𝑥′
𝜕𝑦

+
𝜕𝑢𝑦′
𝜕𝑥

(22)

𝜉′ =1
2

[

𝜕𝑢𝑧′
𝜕𝑦

−
𝜕𝑢𝑦′
𝜕𝑧

]

, 𝜂′ =1
2

[

𝜕𝑢𝑥′
𝜕𝑧

−
𝜕𝑢𝑧′
𝜕𝑥

]

, 𝜒 ′ =1
2

[ 𝜕𝑢𝑦′
𝜕𝑥

−
𝜕𝑢𝑥′
𝜕𝑦

(23)

The orientation of particles in space can be parameterized by Euler
angles [𝜙, 𝜃, 𝜓]. However, this leads to a singularity for 𝜃 = 0 and 𝜃 = 𝜋.
To overcome this drawback, the orientation in space is described by
Euler parameters 𝐞 =[𝑒0, 𝑒1, 𝑒2, 𝑒3]. The Euler parameters (quaternions)
an be determined using:

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑒0
𝑒1
𝑒2
𝑒3

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos [0.5 [𝜙 + 𝜓]] cos
[

𝜃∕2
]

cos [0.5 [𝜙 − 𝜓]] sin
[

𝜃∕2
]

sin [0.5 [𝜙 − 𝜓]] sin
[

𝜃∕2
]

sin [0.5 [𝜙 + 𝜓]] cos
[

𝜃∕2
]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(24)

nd are subject to the constraint 𝑒20 + 𝑒
2
1 + 𝑒

2
2 + 𝑒

2
3 = 1, (Goldstein, 1980).

he rotation matrix in the inertia frame follows as

=
⎡

⎢

⎢

⎣

𝑒20 + 𝑒
2
1 − 𝑒

2
2 − 𝑒

2
3 2[𝑒1𝑒2 + 𝑒0𝑒3] 2[𝑒1𝑒3 − 𝑒0𝑒2]

2[𝑒1𝑒2 − 𝑒0𝑒3] 𝑒20 − 𝑒
2
1 + 𝑒

2
2 − 𝑒

2
3 2[𝑒2𝑒3 − 𝑒0𝑒1]

2[𝑒1𝑒3 + 𝑒0𝑒2] 2[𝑒2𝑒3 − 𝑒0𝑒1] 𝑒20 − 𝑒
2
1 − 𝑒

2
2 + 𝑒

2
3

⎤

⎥

⎥

⎦

.

(25)

In addition, the evolution of the quaternions (Euler parameters) is
related to the angular particle velocity in the particle frame 𝝎′ as:

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑒0∕𝑑𝑡
𝑑𝑒1∕𝑑𝑡
𝑑𝑒2∕𝑑𝑡
𝑑𝑒3∕𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎦

= 1
2

⎡

⎢

⎢

⎢

⎢

⎣

−𝑒1 −𝑒2 −𝑒3
𝑒0 −𝑒3 𝑒2
𝑒3 𝑒0 −𝑒1
−𝑒2 𝑒1 𝑒0

⎤

⎥

⎥

⎥

⎥

⎦

𝝎′ . (26)

2.2.3. Superellipsoid surrogate approach
In the case of the targeted microparticles the flow around the

particles can be described by the Stokes flow, for which Happel and
Brenner (1983) found that the translational and rotational resistance
tensors are symmetric. Therefore, each particle has principal translation
axes, i.e. three perpendicular directions. Consequently, if a particle is
translated without rotation in one of those, it experiences a force solely
in that direction, (Štrakl et al., 2022a). In the case of an orthotropic
particle and the choice of pFoR in line with the symmetry planes, the
resistance matrices for translation 𝐊′, rotation 𝛀′ and deformation 𝚷′

re diagonal, (Štrakl et al., 2022a). In our previous work, see Štrakl
t al. (2022a), we developed a superellipsoid surrogate approach for 𝐊′,
′ and 𝚷′ for superellipsoids with shapes in the following parameter

anges: 𝜆1 = [1, 11], 𝜆2 = [1, 11], 𝜖1 = [0.2, 1.8] and 𝜖2 = [0.2, 1.8]. In this
ontext, we performed a parametric study to model the shape depen-
ence of the components of the translation, rotation, and deformation
esistance tensor.

The approach, (Štrakl et al., 2022a), was set up by deriving a
ultivariate approximation procedure to predict the tensor coefficients
′, 𝛀′, and 𝚷′ individually. We introduced 𝑚𝑡ℎ order univariant poly-
omials in the form 𝑝𝑚(𝑥) = [1 𝑥 𝑥2 … 𝑥𝑚]𝑇 , which were employed
or each geometric parameter, i.e. 𝑝3(𝜆1), 𝑝3(𝜆2) with 𝑚 = 3 and 𝑝2(𝜖1),
2(𝜖2) using 𝑚 = 2. Furthermore, we combined the polynomials of the
spect ratio and shape factors as 𝒑3,3(𝜆1, 𝜆2) = vec

(

[

𝑝3(𝜆1)𝑝3(𝜆2)𝑇
]𝑇
)

nd 𝒑2,2(𝜖1, 𝜖2) = vec
(

[

𝑝2(𝜖1)𝑝2(𝜖2)𝑇
]𝑇
)

. Finally, we determined the re-
ulting approximation scheme in the form of a multivariate polynomial
s follows (Štrakl et al., 2022a):

𝑇 ̂
(𝜆1, 𝜆2, 𝜖1, 𝜖2) = 𝒑3,3(𝜆1, 𝜆2) 𝐀𝒑2,2(𝜖1, 𝜖1) , (27)
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with 𝑓 approximating one of the components of one of the resistance
atrices. The coefficients of �̂� were determined using an optimization

problem for each tensor component given by Štrakl et al. (2022a):

min
�̂�

𝑛
∑

𝑖=1

[

𝑓𝑖(𝜆1, 𝜆2, 𝜖1, 𝜖2) − 𝑦𝑖
𝑦𝑖

]2
, (28)

here 𝑓𝑖(𝜆1, 𝜆2, 𝜖1, 𝜖2) denotes the approximation result for each indi-
idual tensor component for the 𝑖𝑡ℎ particle. Moreover, 𝑦𝑖 labels the
ensor component of the 𝑖𝑡ℎ particle shape and 𝑛 denotes the number
f particle shapes considered. The determined coefficients of �̂� are
iven in Štrakl et al. (2022a) (available on Github Štrakl et al., 2022b).
oreover, the fitting accuracy of the surrogate model was increased

y dividing it into two subdomains, namely 1 for 𝜆1 ≤ 5 and 2
or 11 ≤ 𝜆1 > 5. As a result of the optimization problem, we obtain
he polynomial coefficient matrices with the best fitting terms for each
ensor component in both ranges which exemplarily renders �̂�1

(𝐾 ′
𝑥𝑥),

̂ 1
(𝐾 ′

𝑦𝑦), �̂�1
(𝐾 ′

𝑧𝑧) and �̂�2
(𝐾 ′

𝑥𝑥), �̂�2
(𝐾 ′

𝑦𝑦), �̂�2
(𝐾 ′

𝑧𝑧) considering the
translational resistance matrix 𝐊′.

2.3. Wall interception model

As described by Feng and Kleinstreuer (2013), non-spherical par-
ticles such as ellipsoids and fibers show more complicated deposition
behavior than spheres. For spherical particles, wall contact occurs when
the distance between the particle centroid 𝒓𝑐 and the nearest wall point
𝒓𝑤 is less than or equal to the particle radius, i.e. ‖𝒓𝑐 − 𝒓𝑤‖2 ≤ 𝑑𝑝∕2.
Furthermore, for sticky walls, e.g. mucus-coated airways, wall depo-
sition is assumed when there is contact between the particle and the
wall, (Feng and Kleinstreuer, 2013). In contrast to spherical particles,
deciding whether non-spherical particles deposit is more complicated
as there are three different possibilities (Feng and Kleinstreuer, 2013):

1. if ‖𝒓𝑐 − 𝒓𝑤‖2 ≤ 𝑐, the particle will deposit.
2. if ‖𝒓𝑐 − 𝒓𝑤‖2 > 𝑎, the particle does not touch the wall.
3. if 𝑐 < ‖𝒓𝑐 − 𝒓𝑤‖2 ≤ 𝑎, the particle deposits depending on its

orientation.

Note that 𝑐 labels the smallest half axis and 𝑎 the major half axis of
the superellipsoidal particle under consideration. In the following, we
present the deposition algorithm for the 3𝑟𝑑 case, i.e. 𝑐 < ‖𝒓𝑐−𝒓𝑤‖2 ≤ 𝑎.
In this context, we introduce the equation of the wall.

Let �̂�, �̂�, �̂� be three points on a plane wall in a frame of reference
with origin at the wall. The corresponding wall normal can then be
determined as follows:

𝒏 =

[

�̂� − �̂�
]

×
[

�̂� − �̂�
]

|

|

|

[

�̂� − �̂�
]

×
[

�̂� − �̂�
]

|

|

|

, (29)

leading to the wall equation:

𝑊 (𝒓) = 𝒏 ⋅
[

𝒓 − �̂�
]

= 0 , (30)

where 𝒓 = [𝑥, 𝑦, 𝑧]𝑇 denotes an arbitrary wall point. Note that in the
context of this work, an established particle–wall contact is treated
as particle deposit. The algorithm for detecting particle–wall contact
(Algorithm 1) is presented below (You and Zhao, 2018).

3. Validation

In the following, we consider three different validation cases, i.e
particles in a lid driven cavity flow, a pipe flow, and a simplified
bifurcation. In this framework, we assume steady-state flow conditions
as well as a one-way coupling of particle and fluid flow, i.e the influence
of the particles on the laminar flow of an incompressible fluid under
consideration is neglected. Moreover, the flow is considered laminar,
since the Reynolds number is sufficiently low in all cases studied
and particle–particle interactions are neglected as we assume dilute
particle flow. To obtain the time evolution of the particle trajectory, the
numerical solution of the momentum equations (Eq. ((4),(15)–(17)))
and the kinematics equations (Eq. (26)–(14)) are required.
5

Algorithm 1 Wall deposition model
𝐟𝐨𝐫𝐚𝐥𝐥 particles 𝐝𝐨

𝐟𝐨𝐫𝐚𝐥𝐥 wall faces in interaction distance 𝐝𝐨
𝐢𝐟 ||𝒓𝑐 − 𝒓𝑤||2 ≤ 𝑐: contact to wall
𝐢𝐟 ||𝒓𝑐 − 𝒓𝑤||2 > 𝑎: no contact to wall
𝐢𝐟 𝑐 < ||𝒓𝑐 − 𝒓𝑤||2 ≤ 𝑎:

Map wall data to positive octant of superellipsoid surface 𝑆
Find 𝒓 by solving optimization problem: 𝑚𝑖𝑛(𝑆(𝒓)) with the
constraint 𝑊 (𝒓) = 0
𝐢𝐟 𝑆(𝒓) ≤ 1.0: particle–wall contact → particle deposits.

𝐞𝐧𝐝
𝐞𝐧𝐝

3.1. Flow field

Since we use a one-way coupling of fluid and particle, a priori
numerical calculation of the steady-state flow field is required for
Lagrangian particle tracking. In this work, the Euler frame is used to
solve the flow field. We obtain the incompressible steady-state flow
by applying the Navier Stokes equations using OpenFOAM®, (Open-
FOAM The OpenFOAM Foundation, 2020; Weller et al., 1998). The
governing equations are given by (Weller et al., 1998):

div(𝜌𝑓𝒖⊗ 𝒖) = −grad𝑝 + div𝝉 + 𝒇𝐷 (31)

and

div𝒖 = 0 . (32)

The viscous stress tensor 𝝉 is obtained by (Ferziger and Perić, 2008):

𝝉 ∶= 𝜇 gradSYM𝒖 . (33)

OpenFOAM® uses the finite volume method (FVM) to discretize the
above equations. In Eqs. (31)–(33), 𝒖, 𝑝 and 𝜌𝑓 denote the fluid velocity,
pressure and fluid density, respectively. Moreover, body forces are
captured by 𝒇𝐷.

3.2. Reference analytical model

To validate the developed superellipsoid particle tracking algo-
rithm, we replicate numerical and experimental studies, which em-
ployed spheres and prolate ellipsoids. These particles correspond to
superellipsoids with 𝜆1 = 𝜆2 = 𝜖1 = 𝜖2 = 1.0 and 𝜆1 > 𝜆2 = 𝜖1 = 𝜖2 = 1.0,
espectively. For prolate ellipsoidal particles the tensor coefficients 𝐊′,
′ and 𝛀′ can be determined analytically and are functions of the
article aspect ratio (𝜆 = 𝜆1). Followingly, the coefficients 𝐊′ can be
ritten as:

′
𝑦𝑦 = 𝐾 ′

𝑧𝑧 =
16

[

𝜆2 − 1
]3∕2

[

2𝜆2 − 3
]

ln(𝜆 +
√

𝜆2 − 1) + 𝜆
√

𝜆2 − 1
, (34)

𝐾 ′
𝑥𝑥 =

8
[

𝜆2 − 1
]3∕2

[

2𝜆2 − 1
]

ln(𝜆 +
√

𝜆2 − 1) − 𝜆
√

𝜆2 − 1
, (35)

In the limit of a spherical particle shape the resistance matrix is given
by

lim
𝜆→1

𝐊′ = 6 𝐈 , (36)

where 𝐈 denotes the identity matrix, leading to 𝐾𝑥𝑥 = 𝐾𝑦𝑦 = 𝐾𝑧𝑧 = 6.
he tensor coefficients 𝚷′ and 𝛀′ can be obtained as follows:

′ = 16 𝜆
3

[

1 − 𝜆2
]

⎡

⎢

⎢

⎢

0
1

𝛽0+𝜆2 𝛾0
−1

⎤

⎥

⎥

⎥

, (37)
⎣ 𝛼0+𝜆2 𝛾0 ⎦
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Table 1
𝐊′, 𝛀′, 𝚷′ tensor coefficients obtained analytically (A) or by using the superellipsoid surrogate approach proposed by Štrakl et al. (2022a) (B).
𝜆 𝐾 ′

xx 𝐾 ′
yy 𝐾 ′

zz 𝛱 ′
𝑥𝑥 𝛱 ′

𝑦𝑦 𝛱 ′
𝑧𝑧 𝛺′

𝑥𝑥 𝛺′
𝑦𝑦 𝛺′

𝑧𝑧

1.0
A 6 6 6 0 0 0 8 8 8
B 6.00 6.00 6.00 0.00 0.00 0.00 7.98 7.98 7.97

2.0
A 7.22 8.27 8.27 0.00 −14.45 14.45 12.91 24.08 24.08
B 7.22 8.28 8.28 0.003 -14.44 14.43 12.83 24.01 23.99

5.0
A 10.71 14.225 14.23 0.00 −171.34 171.34 28.24 185.62 185.62
B 10.70 14.23 14.24 0.02 -171.08 170.85 27.91 185.15 184.95
Fig. 2. Sketch of computational domain of the lid driven cavity case and particle injection position in the 𝑦∕𝐿 = 0.4 plane.
Fig. 3. Flow field inside the lid driven cavity in the 𝑦∕𝐿 = 0.4 and 𝑥∕𝐿 = 0.5 plane (Re = 470).
𝛀′ = 16 𝜆
3

⎡

⎢

⎢

⎢

⎢

⎣

2
[𝛼0+𝛽0]

1
[

𝛽0+𝜆2 𝛾0
]

[

1 + 𝜆2
]

1
[

𝛼0+𝜆2 𝛾0
]

[

1 + 𝜆2
]

⎤

⎥

⎥

⎥

⎥

⎦

(38)

by using the non-dimensional coefficients 𝛼0, 𝛽0 and 𝛾0 defined by
Gallily and Cohen (1979):

𝛼0 = 𝛽0 =
𝜆2

𝜆2 − 1
+ 𝜆

2[𝜆2 − 1]3∕2
ln

[

𝜆 −
√

𝜆2 − 1

𝜆 +
√

𝜆2 − 1

]

, (39)

𝛾0 = − 2
𝜆2 − 1

− 𝜆
[𝜆2 − 1]3∕2

ln

[

𝜆 −
√

𝜆2 − 1

𝜆 +
√

𝜆2 − 1

]

. (40)

In the limit of spherical particle shape (𝜆1 = 𝜆2 = 𝜖1 = 𝜖2 = 1.0) the
nondimensional coefficients render 𝛼0 = 𝛽0 = 𝜆𝛾0 = 2∕3, leading to
𝛺′ = 𝛺′ = 𝛺′ = 8 and 𝛱 ′ = 𝛱 ′ = 𝛱 ′ = 0.
6

𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑥𝑥 𝑦𝑦 𝑧𝑧
3.3. Lid driven cavity

The lid-driven cavity flow is a common reference case for viscous
incompressible fluid flows, (Cui et al., 2018b). It has been exten-
sively studied by both experimental, (Tsorng et al., 2008; Koseff and
Street, 1984), analytical, (Shankar and Deshpande, 2000), and numeri-
cal methods, (Chiang and Sheu, 1997; Cui et al., 2018b). Nevertheless,
there are few studies on the particle motion of non-spherical particles
in lid-driven cavity flows, (Cui et al., 2018b). Tsorng et al. (2008)
used data from video images to investigate the motion of macroscopic
rigid spheres moving in a 3D viscous flow in a closed cubic cavity in
the 𝑦∕𝐿 ≈ 0.4 plane. Tsorng et al. (2008) employed spherical macro-
particles with 𝑑𝑝 = 3 mm and 𝜌𝑝 = 1210 kg∕m. In addition, Cui et al.
(2018b) studied prolate ellipsoidal particles moving in the cavity flow
employing the same setup as Tsorng et al. (2008).

The flow conditions used in the following are consistent with the
numerical study of Cui et al. (2018b). Fig. 2 sketches the computational
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Fig. 4. Trajectory of spherical particle in the 𝑦∕𝐿 = 0.4 plane: Present model 𝜌∗ = [𝜌𝑓 − 𝜌𝑝]∕𝜌𝑓 = −0.07% (analytical coefficients), Present model 𝜌∗ = 0.05% (analytical
coefficients), Present model 𝜌∗ = −0.07% (superellipsoid surrogate approach Štrakl et al., 2022a), Present model 𝜌∗ = 0.05% (superellipsoid surrogate approach Štrakl et al.,
022a), Tsorng et al. (𝜌∗ = 0.05%) (Tsorng et al., 2008), Cui et al. (𝜌∗ = −0.07%) (Cui et al., 2018b), Cui et al. (𝜌∗ = 0.05%) (Cui et al., 2018b).
ig. 5. Trajector of prolate ellipsoidal particles in the 𝑦∕𝐿 = 0.4 plane: Present model 𝜆 = 5 (𝜌∗ = 0.05%, analytical coefficients), Present model 𝜆 = 2 (𝜌∗ = 0.05%, analytical
oefficients), Present model 𝜆 = 5 (𝜌∗ = 0.05%, superellipsoid surrogate approach (Štrakl et al., 2022a)), 𝜆 = 2 (𝜌∗ = 0.05%, superellipsoid surrogate approach Štrakl et al.,
022a), Cui et al. 𝜆 = 5 (𝜌∗ = 0.05%, Cui et al., 2018b), Cui et al. 𝜆 = 2 (𝜌∗ = 0.05%, Cui et al., 2018b).
Fig. 6. Sketch of the circular tube and initial position of the particle in the cross-section.
a
f
i

d
f
p

omain with an edge length of 𝐿 = 0.1 m. The shear flow in the
avity is caused by a constant velocity 𝑈 = 0.0813 m∕s of the moving
op wall. Using a kinematic viscosity of the fluid 𝜈𝑓 = 17.3 mm2∕s
esults in a Reynolds number of Re = 470. In addition, the front
nd rear walls are assumed to be symmetry boundaries. Moreover,
ll remaining walls are described as no-slip boundaries. Besides, the
omputational grid for the fluid domain is discretized with a grid
esolution of 60 × 60 × 60 cells. Fig. 2 graphically illustrates the particle
racking approach within the cavity, highlighting the initial position
7

t

nd orientation of the injected particle. Note that we consider both drag
orce 𝑭𝐷 and reduced gravitational force 𝑭𝐺𝐵 . The particles considered
n this validation are listed in Table 1.

In addition, Fig. 3 presents the velocity distribution within the lid-
riven cavity at Re = 470 in the 𝑦∕𝐿 = 0.4 and 𝑥∕𝐿 = 0.5 planes. The
low is driven by moving the upper boundary, which causes a large
rimary vortex visible in the 𝑦∕𝐿 = 0.4 plane, see Fig. 3 (a).

In the first step, we validate the superellipsoid particle tracking for
he limiting case of a spherical shape. For this purpose, we choose the
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Fig. 7. Comparison of direction cosines of prolate ellipsoids in pipe flow: Tian et al. (2012), (𝑈𝑚𝑎𝑥 = 1.0 m∕s) (Cui et al., 2018b), (𝑈𝑚𝑎𝑥 = 0.97 m∕s) (Cui et al., 2018b),
present superellipsoid particle tracking using the reference analytical model (𝑈𝑚𝑎𝑥 = 0.97 m∕s).
Table 2
Analytical 𝐊′, 𝛀′ and 𝚷′ tensor coefficients for three prolate ellipsoidal particles as well as approximations according to the superellipsoid
surrogate approach of Štrakl et al. (2022a).
Coeff. 𝐊′, 𝛀′, 𝚷′ Prolate ellipsoids

𝜆= 3.5 𝜆= 7.0 𝜆= 14.0

Analytical Fit (Štrakl et al., 2022a) Analytical Fit (Štrakl et al., 2022a) Analytical Fit (Štrakl et al., 2022a)

𝐾xx 9.01 9.01 12.85 12.85 19.68 19.83
𝐾yy 11.36 11.37 17.81 17.83 29.22 29.41
𝐾zz 11.36 11.38 17.81 17.85 29.22 29.54

𝛺xx 20.50 20.33 38.67 38.28 75.57 76.02
𝛺yy 79.61 79.42 428.43 427.72 2584.71 2590.33
𝛺zz 79.61 79.37 428.43 427.15 2584.71 2583.41

𝛱xx 0.00 −0.001 0.0 0.01 0.0 0.31
𝛱yy −67.59 −67.53 −411.29 −410.79 −2558.47 −2564.16
𝛱zz 67.59 67.48 411.29 409.86 2558.47 2540.22

𝑥𝐷𝑖𝑓𝑓,𝑦𝑦 =
|𝛺𝑦𝑦 |−|𝛱yy |

|𝛱𝑦𝑦 |
[%] 17.78 17.61 4.17 4.12 1.03 1.02

𝑥𝐷𝑖𝑓𝑓,𝑧𝑧 =
|𝛺𝑧𝑧 |−|𝛱zz |

|𝛱𝑧𝑧 |
[%] 17.78 17.62 4.17 4.22 1.03 1.70
Table 3
𝐊′, 𝛀′ and 𝚷′ tensor coefficients estimations for a realistic pollen particle (Štrakl et al., 2022a), obtained via DNS, approximated via sphere, prolate ellipsoid, triaxial ellipsoid
and superellipsoid.
𝐊′, 𝛀′, 𝚷′ Pollena (Štrakl et al., 2022a) Sphereb Prolatec Triaxiald Superel.e Shape factors

Haider and Levenspiel (1989) Leith (1987) Hölzer and Sommerfeld (2008)

Case ID – A B C D1/D2 E1/E2 F1/F2 G1/G2

𝐾 ′
xx 10.7 6 7.235 9.413 10.58 9.505 9.324 9.922

𝐾 ′
yy 10.80 6 8.293 9.582 10.71 9.505 9.431 9.968

𝐾 ′
zz 12.01 6 8.293 10.84 11.86 9.505 10.36 10.46

𝛺′
xx 50.07 8 12.95 34.05 0/47.23 0/8 0/8 0/8

𝛺′
yy 50.88 8 24.29 37.65 0/50.71 0/8 0/8 0/8

𝛺′
zz 63.20 8 24.29 44.79 0/61.65 0/8 0/8 0/8

𝛱 ′
xx 25.31 0 0.0 19.35 0/23.51 0/0 0/0 0/0

𝛱 ′
yy −26.22 0 −14.63 −23.53 0/−27.56 0/0 0/0 0/0

𝛱 ′
zz 0.86 0 14.63 3.87 0/3.791 0/0 0/0 0/0

𝐾 ′
xx2𝑐∕𝑑𝑒𝑞 6.09 6 5.733 5.944 0/6.025 5.412 5.309 5.650

𝐾 ′
yy2𝑐∕𝑑𝑒𝑞 6.15 6 6.572 6.051 0/6.100 5.412 5.370 5.676

𝐾 ′
zz2𝑐∕𝑑𝑒𝑞 6.84 6 6.572 6.846 0/6.756 5.412 5.899 5.956

aFitted tensor coefficients (Štrakl et al., 2022a) solely for comparison (superellipsoid surrogate approach not applicable due to non-symmetric particle shape).
bAnalytical tensor coefficients for 𝜆1 = 𝜆2 = 𝜖1 = 𝜖2 = 1.0.
cAnalytical tensor coefficients for 𝜆1 = 2.009; 𝜆2 = 𝜖1 = 𝜖2 = 1.0.
dSuperellipsoid surrogate mode, l (Štrakl et al., 2022a), for 𝜆1 = 2.081; 𝜆2 = 1.907; 𝜖1 = 𝜖2 = 1.0.
eSuperellipsoid surrogate approach, Štrakl et al. (2022a), for 𝜆1 = 1.96; 𝜆2 = 1.83; 𝜖1 = 0.564; 𝜖2 = 0.472.
numerical results of Cui et al. (2018b) and the experimental results
of Tsorng et al. (2008) as references. In agreement with Cui et al.
(2018b), we consider two subcases, i.e. 𝜌∗ = [𝜌𝑓 − 𝜌𝑝]∕𝜌𝑓 = −0.07%
(Case A) and 𝜌∗ = 0.05% (Case B). Recall, that 𝜌𝑓 denotes the fluid
density, while 𝜌 denotes the particle density. The particle response
8

𝑝

time in the present study is 𝜏𝑝 = 0.029 s and the particle Stokes
number is St = 0.023 ≪ 1. Fig. 4 displays the resulting trajectory
of the superellipsoidal particle in the plane 𝑦∕𝐿 = 0.4 next to the
reference results, (Tsorng et al., 2008; Cui et al., 2018b). As shown in
Fig. 4, the present superellipsoid particle tracking is able to accurately
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Fig. 8. Directional cosines of prolate ellipsoids in pipe flow: present superellipsoid particle tracking (analytical coefficients), present superellipsoid particle tracking (using
our superellipsoid surrogate approach, Štrakl et al. (2022a)).
reproduce the trajectory of the spherical particle under consideration,
as the deviations from the numerical results of Cui et al. (2018b)
are negligible. In addition, Fig. 5 (b) highlights the applicability of
the superellipsoid surrogate approach, (Štrakl et al., 2022a), in the
spherical limit, since the particle motion is identical compared to the
use of the analytical tensor coefficients.

In the next step, we analyze the motion of prolate ellipsoids sus-
pended in the lid driven cavity flow. In this context, we consider both
prolate ellipsoids with 𝑑𝑒𝑞 = 3 mm and either 𝜆 = 2.0 or 𝜆 = 5.0.
The initial orientation of the particles is illustrated in Fig. 2. The
trajectories of the tracked prolates over a period of 𝑡𝑚𝑎𝑥 = 5 s (≈ 172.4𝜏𝑝)
considering 𝑭𝐷 and 𝑭𝐺 are shown in Fig. 5. Fig. 5 (a) shows excellent
agreement of the superellipsoid particle tracking with the numerical
results for prolate ellipsoids presented by Cui et al. (2018b). In addition,
the simulation is capable to capture the phenomenon that the elongated
particles tend to move farther away from the right boundary wall as the
9

aspect ratio increases, (Cui et al., 2018b). Moreover, Fig. 5 (b) shows
that the novel superellipsoid surrogate approach, presented in Štrakl
et al. (2022a) yields virtually identical results compared to the simula-
tion employing analytical resistance tensor coefficients. This validation
case clearly demonstrates the applicability of the novel superellipsoid
particle tracking together with the superellipsoid surrogate approach
proposed by Štrakl et al. (2022a) to replicate spherical and ellipsoidal
particle motion (up to 𝜆 ≤ 5).

3.4. Pipe flow

Furthermore, we compare the novel superellipsoid particle tracking
with numerical results presented by Tian et al. (2012) for tracking
suspended ellipsoidal particles in a circular pipe flow. Tian et al.
(2012) used a circular channel with length 𝐿 = 0.7 m and diameter
𝐷 = 4.2 mm. The considered pipe flow is laminar, since we assume
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Fig. 9. Directional cosines of four different particle shapes in a laminar pipe flow. Non-dimensional parameter: 𝑡∗ = 𝑡𝑆𝑖𝑚∕𝜏𝑝. Intial orientation 𝜑 = −90◦, 𝜃 = 0◦, 𝜓 = 0◦; A
(sphere), B (prolate ellipsoid), C (triaxial ellipsoid), D2 (superellipsoid).
an average inflow velocity of �̄� = 0.485 m∕s as suggested by Cui
et al. (2018b). The particle under consideration has a prolate ellipsoidal
shape with a semi-minor axis 𝑐 = 0.5 μm, an aspect ratio 𝜆 = 14.0 and a
density of 𝜌𝑝 = 2560 kg∕m3. Note that the air density is 1.208 kg∕m3

(thus 𝜌𝑝 ≫ 𝜌𝑓 ) and the kinematic viscosity is 1.491 × 105 mm2∕s
rendering Re = 137. The particle response time renders 𝜏𝑝 = 0.046 ms
and the Stokes number is St = 0.01. The ellipsoid is positioned in the
𝑥–𝑦 plane with an initial position of 𝑦 = −1.65 mm, as depicted in Fig. 6.
The flow vorticity at the injection position is 𝜔𝑓 = 726.95 rad∕s.

The analytically determined tensor coefficients as well as the ten-
sor coefficients obtained using our superellipsoid surrogate approach,
(Štrakl et al., 2022a), are listed in Table 2. Note that the relative
difference between the tensor coefficients 𝛱 ′

𝑦𝑦 and 𝛺′
𝑦𝑦 (𝑥𝐷𝑖𝑓𝑓,𝑦𝑦 =

[

|𝛺𝑦𝑦| − |𝛱𝑦𝑦|
]

∕|𝛱𝑦𝑦|) decreases with increasing 𝜆, see Table 2. A
similar trend is observed for the tensor coefficients 𝛺𝑧𝑧 and 𝛱𝑧𝑧.

Fig. 7 shows excellent agreement in the rotational pattern between
the results of the present superellipsoid particle tracking (using the
reference analytical model) and the results of Cui et al. (2018b). The
phase differences between the results of Tian et al. (2012) and the
results of Cui et al. (2018b) are attributed to density and viscosity
differences as Tian et al. (2012) did not specify the air properties
used. Consequently, a difference in density and viscosity leads to a
slightly altered Stokes number considered in the simulations, (Cui et al.,
2018b). However, it should be emphasized that the excellent agreement
between the present simulation and the numerical results presented
by Cui et al. (2018b) confirms the ability of our superellipsoid particle
tracking to accurately capture the rotational motion of the studied
non-spherical particle.

3.4.1. Analysis of different prolate ellipsoids in a laminar pipe flow
Having validated the superellipsoid particle tracking ability to repli-

cate the results of Cui et al. (2018b) and Tian et al. (2012), using
analytically determined 𝐊′, 𝛀′, 𝚷′ tensor coefficients, we investigate
the ability of the novel superellipsoid surrogate approach to model the
resistance tensors of superellipsoidal particles as described in Štrakl
et al. (2022a). Note that validation is possible in the prolate ellipsoid
limit, since the resistance tensor coefficients can be determined an-
alytically. In this context, we study the following aspect ratios: 𝜆 =
10
3.5, 7.0, 14.0 using 𝑐 = 0.5 μm, rendering St = 0.004, 0.006 and 0.011,
respectively. The tensor coefficients are listed in Table 2. To compare
the rotational motion, we track the direction cosines of the particle axis
with respect to the global reference system. The resulting directional
cosines for the three prolate spheroids considered are shown in Fig. 8.

As presented in Fig. 8 (a–d), employing the novel superellipsoid sur-
rogate approach of Štrakl et al. (2022a) or using the reference analytical
model results in comparable particle rotation. However, as shown in
Fig. 8 (e–f) our superellipsoid surrogate approach, (Štrakl et al., 2022a),
renders a deviating rotational motion for strongly elongated particles,
e.g. 𝜆 = 14.0, although the errors in prediction the resistance tensor
coefficients are small, see Table 2. As presented in Fig. 8, we find that
the relative differences between the tensor coefficients of 𝛀′ and 𝚷′

vanish as 𝜆 increases. This enables strongly elongated particles to align
with the flow as the torque can cancel out (𝑻 ≈ 𝟎) due to similar 𝛀′ and
𝚷′ tensor coefficients, see Eq. (21). Therefore, even minor deviations in
the tensor coefficients prediction for strongly elongated particles can
lead to an increase in the relative difference of the tensor coefficients
of 𝛀′ and 𝚷′, resulting in an earlier onset of rotation after alignment
with the flow, as shown in Fig. 8 (e–f).

3.4.2. Analysis of various superellipsoids in pipe flow
In the next step, we attempt to approximate the dynamics of a

realistic pollen particle suspended in a laminar pipe flow. The computa-
tional setup is the same as employed in Section 3.4. In this context, we
study four different shape approximations, namely spherical, prolate
ellipsoidal, triaxial ellipsoidal, and superellipsoidal as well as common
shape factors, see Hölzer and Sommerfeld (2008), Haider and Lev-
enspiel (1989) and Leith (1987). The particles considered alongside
the resistance tensor coefficients of the studied particles were taken
from Štrakl et al. (2022a) and are repeated in Table 3 for convenience.

Table 3 shows that the higher the complexity of the particle shape,
the better the agreement between the 𝐊′, 𝛀′ and 𝚷′ tensor coeffi-
cients of the particle and the pollen replica, (Štrakl et al., 2022a).
Consequently, the largest deviations are obtained for the spherical
particle approximation and the best fit for the superellipsoidal particle.
Moreover, we investigate common shape factors presented in literature,
i.e. Haider and Levenspiel (1989), Leith (1987) and Hölzer and Som-
merfeld (2008). These shape factors are further applied to a spherical
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Fig. 10. Velocity 𝒗 and angular velocity 𝝎 components of four different particle shapes in a laminar pipe flow. Non-dimensional parameters: 𝑡∗ = 𝑡𝑆𝑖𝑚∕𝜏𝑝, 𝜔∗
𝑖 = 𝜔𝑖∕𝜔𝑓 (𝑖 = 𝑥,′ 𝑦′ , 𝑧′)

with flow vorticity at the injection position 𝜔𝑓 = 726.95 rad∕s. Initial orientation: 𝜑 = −90◦, 𝜃 = 0◦, 𝜓 = 0◦; A, B, C, D2, D1, E1, F1, G1, E2,
F2, G2.
shape to account for non-sphericity effects. Note, however, that as
shown in Table 3, the obtained shape factors lead to a larger deviation
for 𝐊′2𝑐∕𝑑𝑒𝑞 to the reference pollen particle than the spherical shape.
In addition, the rotation of the spherical particles using shape factors
is either neglected (E1, F1, G1) or taken into account (E2, F2, G2).

In the following, we investigate the influence of the considered
particle shapes on the particle motion. In this context, we set the
volume equivalent diameter 𝑑𝑒𝑞 for all considered shapes to 𝑑𝑒𝑞 =
5 μm and the density to 2560 kg∕m3, with a particle volume of 𝑉𝑝 =
65.45 μm3. Considering the domain dimensions, the non-dimensional
pipe diameter is 𝐷∗ = 𝐷∕𝑑𝑒𝑞 = 840 and the non-dimensional pipe length
is 𝐿∗ = 𝐿∕𝑑𝑒𝑞 = 140000. Note that the particles are suspended in a
laminar air flow with a fluid density of 𝜌𝑓 = 1.208 kg∕m3 and thus
𝜌𝑝 ≫ 𝜌𝑓 . The particle response times of the volume equivalent sphere
is 𝜏𝑝 = 0.197 ms, see Eq. (11). Furthermore, using Eq. (10) we can obtain
the volume equivalent particle Stokes number St, which renders St =
11
0.046 ≪ 1 for all particle shapes considered. In addition, we evaluate
the analytical terminal velocity of a settling sphere, see Eq. (13) which
gives |𝑣𝑡| ≈ 𝑔∕𝜏𝑝 (= 0.001936 m∕s with 𝑔 = 9.81 m∕s2). Followingly,
the maximal descent 𝑦𝑚𝑎𝑥 of the spherical particle in the considered
simulation time of 𝑡𝑚𝑎𝑥 = 1013𝜏𝑝 (≈ 0.2 s), renders 𝑦𝑚𝑎𝑥 = 77.44 𝑑𝑒𝑞 .

Since the superellipsoidal particle most accurately reproduces the
tensor coefficients of the pollen replica (see Table 3), it will serve as a
reference in the following analysis. In all cases considered, the particle
is initialized with the flow velocity present at the particular injection
position and zero angular velocity.

Orientation A:
First, the initial orientation of the particles under consideration

is set as follows: 𝜑 = −90◦, 𝜃 = 0◦, 𝜓 = 0◦, which describes an
initial perpendicular orientation of the major semi-axis of the particles
to the flow direction. Fig. 9 presents the resulting directional cosines
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Fig. 11. Deviation of particle position compared to superellipsoid particle position (𝑥𝑠𝑒, 𝑦𝑠𝑒). The deviation is normalized to the volume equivalent diameter of a sphere (𝑑𝑒𝑞). The
intial particle orientation is set to 𝜑 = −90◦, 𝜃 = 0◦, 𝜓 = 0◦. A, B, C, D2, D1, E1, F1, G1, E2, F2, G2, maximal descent of a
settling sphere in Stokes flow (𝑦𝑚𝑎𝑥∕𝑑𝑒𝑞 = 𝑣𝑡 𝑡𝑚𝑎𝑥∕𝑑𝑒𝑞).
F
u
e
a
a

cos(𝑥) and cos(𝑧). Note that for the chosen initial orientation we obtain
cos(𝑧) = 0.

As displayed in Fig. 9, a good agreement of directional cosines
can be obtained between the triaxial particle, the spherical particle
and the superellipsoid reference geometry. However, in the case of
the prolate ellipsoid, the rotational motion varies visibly. While the
directional cosines in 𝑥 and 𝑦 for the spherical, the triaxial, and the
superellipsoidal particle resemble harmonic oscillations, see Fig. 9, the
prolate ellipsoid rotation is similar as presented in Section 3.4.1, see
Fig. 7. The rotational motion of the prolate ellipsoid agrees well with
the superellipsoidal shapes until the first flow-alignment orientation is
reached (𝑡𝑠𝑖𝑚 ≈ 22𝜏𝑝 ≈ 0.0043 s). As can be seen in Fig. 9, the prolate
ellipsoidal particle traverses the flow-aligned orientation more slowly
than the remaining shapes considered, resulting in a smaller number
of revolutions after 𝑡𝑚𝑎𝑥 = 1013𝜏𝑝 (≈ 0.2 s), i.e three revolutions less.
Note that this extended time of traversing the flow-alignment leads to a
higher average projected particle area in the gravitational direction and
subsequently a smaller average projected area in streamwise direction
than for the remaining shapes considered. In the following, we evaluate
the evolution of the velocity 𝒗 as well as the angular velocity 𝝎 of the
examined particle shapes, see Fig. 10.

As shown in Fig. 10, both the velocity 𝑣𝑥 and 𝑣𝑦 as well as the
angular velocity 𝑤𝑥′ of the studied particles differ notably. Note that
the remaining velocity and angular velocity components render 𝑣𝑦 = 0
and 𝜔𝑥′ = 𝜔𝑦′ = 0 for the chosen initial orientation.

While the prolate ellipsoid moves visibly faster in the flow direction,
the velocity variations of the spherical, triaxial, and superellipsoidal
particles are minor, see Fig. 10 (a). When comparing Figs. 10 (a) and
12

o

10 (b), we find that for all shape factors considered, the deviations from
the superellipsoid reference exceed the errors of the shape approxima-
tions used, i.e. sphere without shape factors, prolate ellipsoid, triaxial
ellipsoid. Looking at the vertical velocity 𝑣𝑦 of the prolate ellipsoidal
particles, additional variations are observed, with the oscillation being
strongest in 𝑣𝑦 and the overall average descent velocity |�̄�𝑦| being
smallest among the particle shapes considered, see Fig. 10 (c). We
attribute these effects to the fact that the flow-alignment orientation of
the prolate ellipsoid is traversed the slowest, as shown in Fig. 9. This
leads to an increased time period in which the largest projected area is
present in the direction of gravity, giving the smallest average settling
velocity, and consequently the smallest projected area in the direction
of flow, rendering an increased horizontal velocity 𝑣𝑥. Due to the flow
configuration considered, the slower descent of the prolate ellipsoid
leads to the effect that it experiences a higher flow velocity during
its entire motion through the pipe than the remaining particles. The
remaining particle shapes sink faster and thus experience a lower flow
velocity as the velocity decreases in gravitational direction towards the
pipe wall. As shown in Fig. 10 (d), however, the shape factors again
lead to the largest deviations from the superellipsoidal reference shape,
which we account to the large deviations in 𝐊′2𝑐∕𝑑𝑒𝑞 components as
presented in Table 3. In addition, we study the angular velocity 𝜔𝑧′ , see
ig. 10 (e,f). As shown, the simulation of the considered pollen particle
sing a spherical (with or without shape factors) as well as prolate
llipsoidal shape approximation is not justified as the superellipsoidal
ngular velocity cannot be adequately reproduced. While the change in
ngular velocity is constant for the spherical shape, the angular velocity
f the prolate ellipsoidal particle depends strongly on the orientation,
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Fig. 12. Directional cosines of four different particle shapes in a laminar pipe flow. Non-dimensional parameter: 𝑡∗ = 𝑡𝑆𝑖𝑚∕𝜏𝑝. Intial orientation 𝜑 = 0◦, 𝜃 = 45◦, 𝜓 = 45◦; A,
, C, D2.
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.e the angular velocity is lowest when traversing the flow-aligned
rientation and increases most rapidly when it is not aligned. However,
he triaxial and superellipsoidal approximations still agree sufficiently.

Next, we investigate the resulting particle trajectories. Fig. 11 (a,
) evaluates the relative deviation (𝑥∗, 𝑦∗) of the particle position (𝑥,
) with respect to the superellipsoidal particle position (𝑥𝑠𝑒, 𝑦𝑠𝑒). Note
hat the deviations are normalized to the volume equivalent diameter
𝑑𝑒𝑞 = 5 μm) of the particles. As shown in Fig. 11, the particle position
hanges strongly with particle shape. After 𝑡𝑚𝑎𝑥 = 1013𝜏𝑝 (≈ 0.2 s),
he streamwise position of the prolate ellipsoid deviates from the
uperellipsoidal reference by more than 200 × 𝑑𝑒𝑞 , as a consequence of
he higher 𝑣𝑥, while the sphere using shape factors deviates between
00 − 900 × 𝑑𝑒𝑞 , see Fig. 11 (a) In contrast, better agreement with the
uperellipsoidal horizontal position is obtained for both the spherical
nd triaxial shape approximations, although still with a visibly devia-
ion of 65×𝑑𝑒𝑞 . Moreover, the prolate particle deviates more than twice
s much from the superellipsoidal reference in the vertical direction as
he spherical (without shape factors) and triaxial shapes, see Fig. 11 (b).
urthermore, we observe that the use of shape factors again produces
he greatest deviations between 5−10×𝑑𝑒𝑞 in 𝑦 direction. For all shapes
nd shape factors considered, the deviation from the superellipsoidal
eference particle is more pronounced in the flow direction than in the
ravitational direction. Moreover, we include the analytic maximum
escent of a settling sphere 𝑦𝑚𝑎𝑥 = 𝑣𝑡 𝑡𝑚𝑎𝑥 in Stokes flow in Fig. 11 (c),
ee Eq. (13). As can be seen, the descent of the simulated spherical
article using the novel superellipsoidal tracking agrees excellently
ith the obtained analytical 𝑦-position while the shape factors lead
13

e

o an increased vertical motion. For the initial orientation chosen, the
hape factors simulations with rotation lead to a comparable result to
he shape factor simulations without rotation. In the case of the shape
actors proposed by Leith (1987) considering rotation does not change
he results, since 𝐾 ′

𝑥𝑥 = 𝐾 ′
𝑦𝑦 = 𝐾 ′

𝑧𝑧.
In general, it is observed that the triaxial ellipsoid for the ini-

ial orientation 𝜑 = −90◦, 𝜃 = 0◦, 𝜓 = 0◦ agrees well with the
uperellipsoidal motion in terms of rotation and velocity, with the
ain deviation occurring in the streamwise propagation. Moreover, the

pherical particle differs mainly in terms of rotational motion, since
constant change of 𝜔𝑧 is observed, while the change of angular

elocity of the considered superellipsoidal particle varies depending
n its orientation to the flow. Due to the extended traversing time of
he flow alignment orientation, the prolate ellipsoidal shape is not able
o reproduce the general motion of the superellipsoidal particle under
onsideration. Furthermore, the shape factors both with and without
otation lead to a strongly differing particle motion and produce higher
eviations than the sphere without shape factors.

rientation B:
In the next step, the initial orientation is set as follows: 𝜑 = 0◦,
= 45◦, 𝜓 = 45◦. By changing the initial orientation, a rotational
otion about all particle semi-axes is observed, as shown in Fig. 12.

In agreement with the previously used orientation (Orientation A),
ig. 12 shows that the prolate ellipsoid exhibits the highest errors in
eproducing the direction cosines of the superellipsoidal reference, as it
xperiences a longer transit time through the flow-aligned orientation.
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Fig. 13. Velocity 𝒗 components of four different particle shapes. Non-dimensional parameters: 𝑡∗ = 𝑡𝑆𝑖𝑚∕𝜏𝑝. Intial orientation 𝜑 = 0◦, 𝜃 = 45◦, 𝜓 = 45◦: A, B, C, D2,
D1, E1, F1, G1, E2, F2, G2.

Fig. 14. Angular velocity 𝝎 components of four different particle shapes. Non-dimensional parameters: 𝑡∗ = 𝑡𝑆𝑖𝑚∕𝜏𝑝, 𝜔∗
𝑖 = 𝜔𝑖∕𝜔𝑓 (𝑖 = 𝑥′ , 𝑦′ , 𝑧′) with flow vorticity at the injection

position 𝜔𝑓 = 726.95 rad∕s. Intial orientation 𝜑 = 0◦, 𝜃 = 45◦, 𝜓 = 45◦: A, B, C, D2, E2, F2, G2,.
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Fig. 15. Deviation of particle position compared to superellipsoid particle position (𝑥𝑠𝑒, 𝑦𝑠𝑒). The deviation is normalized to the volume equivalent diameter of a sphere (𝑑𝑒𝑞). The
initial particle orientation is set to 𝜑 = 0◦, 𝜃 = 45◦, 𝜓 = 45◦. A, B, C, D2, D1, E1, F1, G1, E2, F2, G2, maximal descent of a
settling sphere in Stokes flow (𝑦𝑚𝑎𝑥∕𝑑𝑒𝑞 = 𝑣𝑡 𝑡𝑚𝑎𝑥∕𝑑𝑒𝑞).
𝑥

In addition, deviations from the directional cosines of the superellip-
soidal reference particle are visible when a spherical or triaxial shape
approximation is used. Overall, the triaxial particle achieves the best fit
to the rotational motion of the superellipsoidal particle. Nevertheless,
Fig. 12 indicates that using a simplified shape such as sphere, prolate
ellipsoid, or triaxial ellipsoid is not sufficient to accurately reproduce
the rotational motion of the superellipsoidal reference.

Furthermore, we investigate the velocities and angular velocities of
the differently shaped particles considering the changed initial orien-
tation. A similar trend is observed in the resulting velocity as for the
initial orientation used previously (Orientation A), with the velocity
in the flow direction being lowest for the spherical shape with shape
factors and highest for the prolate ellipsoid, see Fig. 13 (a, b). Moreover,
as shown in Fig. 13 (c,d), |𝑣𝑦| is highest for the spherical particle using
shape factors, while the prolate ellipsoid falls the slowest among the
particle shape approximations used. Note that applying shape factors
to the spherical particle again leads to higher deviations, both in the
rotating and non-rotating cases, see Fig. 13 (b,d).

In addition, Fig. 14 present a strong influence of the particle shape
on the resulting angular velocity. While the prolate ellipsoidal shape
and the spherical particle (both with and without shape factors) give
strong deviations from the superellipsoidal motion, the triaxial par-
ticle results in the best agreement, nevertheless, with clearly visible
differences.

In a final step, we evaluate the resulting particle trajectories. As
shown in Fig. 15, the particle position varies strongly between the
particle shapes considered. After 𝑡𝑚𝑎𝑥 = 1013𝜏𝑝, the streamwise motion
of the prolate ellipsoidal and the spherical particle deviate from the
15
superellipsoidal reference by more than 175 × 𝑑𝑒𝑞 and −176 × 𝑑𝑒𝑞 ,
respectively. In contrast, better agreement with the superellipsoidal
motion in flow direction is obtained for the triaxial shape approxima-
tion, however, still with notably less progression in the 𝑥 direction.
Moreover, the prolate and spherical particle deviate more than twice
as much from the superellipsoidal reference in the vertical direction
as the triaxial shape, see Fig. 15 (b). In addition, we observe that
employing shape factors again leads to a stronger deviation than using
a sphere without shape factors. Besides, for all particles studied, the
deviation from the superellipsoidal reference is more pronounced in
the streamwise than in the gravitational direction. In summary, this test
case underlines the importance of an accurate shape approximation, as
even the best-fitted sphere, prolate ellipsoid, and triaxial ellipsoid of
the pollen replica resulted in significantly altered particle motion.

Superellipsoid Particle Clouds:
In a third test case, we inject 105 particles over 80 % of the pipe

diameter to analyze the motion of particle clouds composed of different
particle shapes. The initial position and orientation of the particles are
random and the particles are initialized with the flow velocity at the
injection position. The properties of the particle clouds are obtained by
averaging over the number of injected particles (𝑛 = 105). For example,
the centroid in the streamwise direction is determined as follows (all
other cloud properties are determined analogously):

̄ =
∑𝑛
𝑖=1 𝑥𝑖
𝑛

, (41)

where 𝑥𝑖 denotes the 𝑥-coordinates for particle 𝑖 with 𝑖 = 1… 𝑛 and
𝑛 labeling the number of particles per particle cloud. As presented in
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Fig. 16. Normalized deviation of particle cloud position �̄� and �̄� compared to superellipsoid particle cloud position (�̄�𝑠𝑒, �̄�𝑠𝑒). The deviation is normalized to the volume equivalent
diameter of a sphere (𝑑𝑒𝑞): 𝑥∗𝑐 = [�̄� − �̄�𝑠𝑒]∕𝑑𝑒𝑞 (analogously for �̄�∗𝑐 ). The particles are injected with random orientation. A, B, C, D2, D1, E1, F1,
G1, E2, F2, G2, maximal descent of a settling sphere in Stokes flow (𝑦𝑚𝑎𝑥∕𝑑𝑒𝑞 = 𝑣𝑡 𝑡𝑚𝑎𝑥∕𝑑𝑒𝑞).
Fig. 17. Normalized deviation of particle cloud velocity components �̄�𝑥 and �̄�𝑦 compared to superellipsoid particle cloud velocity: 𝑣∗𝑥 = [�̄�𝑥 − �̄�𝑠𝑒𝑥 ]∕�̄�
𝑠𝑒
𝑥 (analogously for �̄�∗𝑦). The

particles are injected with random orientation. A, B, C, D2, D1, E1, F1, G1, E2, F2, G2, G2, maximal descent of a settling
sphere in Stokes flow ([𝑣𝑡 𝑡𝑚𝑎𝑥 − �̄�𝑠𝑒𝑦 ]∕�̄�𝑠𝑒𝑦 ).
Fig. 16 (a, b), the deviations in the streamwise direction (𝑥-coordinate)
are more pronounced than the deviations in the gravitational direction
(𝑦-coordinate) for all particle clouds considered. Moreover, a spherical
particle approximation leads to the strongest errors in predicting the
superellipsoid cloud center in both 𝑥 and 𝑦 directions. After 𝑡𝑚𝑎𝑥 =
1013𝜏 , the spherical cloud center (without shape factors) falls behind
16

𝑝

the superellipsoidal cloud by more than 35 × 𝑑𝑒𝑞 in the flow direction,
while in the gravity direction the cloud center descents by more than
3×𝑑𝑒𝑞 . Note that using the presented shape factors (Leith, 1987; Haider
and Levenspiel, 1989; Hölzer and Sommerfeld, 2008) increases the
deviation to more than 75 × 𝑑𝑒𝑞 and 6 × 𝑑𝑒𝑞 in 𝑥 and 𝑦 direction,
respectively. Fig. 16 presents that even a simplification using prolate
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Fig. 18. Normalized deviation of particle cloud kinetic and rotational energy compared to superellipsoid particle cloud kinetic and rotational energy: 𝐸∗
𝑟𝑜𝑡 = [�̄�𝑟𝑜𝑡 − �̄�𝑠𝑒

𝑟𝑜𝑡]∕�̄�
𝑠𝑒
𝑟𝑜𝑡

(analogously for �̄�∗
𝑘𝑖𝑛). The particles are injected with random orientation. A, B, C, D2, D1, E1, F1, G1, E2, F2, G2.
Fig. 19. Probability function of particle long axis orientation in pipe flow at 𝑡𝑚𝑎𝑥 = 1013𝜏𝑝. initial distribution of particle long axis orientations, A, B, C, D2, E2,
F2, G2.
ellipsoidal particles leads to visible differences in the prediction of the
cloud center, however, these differences are much smaller than those
obtained by assuming a cloud consisting of spherical particles (with or
without shape factors). On the contrary, the particle cloud consisting
of triaxial ellipsoids is able to replicate the horizontal and vertical
motion of the superellipsoidal reference with sufficient accuracy, since
the deviations are minor in both 𝑥 and 𝑦 directions. We also determine
the maximum vertical velocity of a sphere settling in Stokes flow, see
Eq. (13), which is shown in Fig. 16 (c). It can be seen that excellent
agreement is obtained between the vertical movement of the spherical
cloud obtained with the novel superellipsoid particle tracking and the
analytical results for a spherical particle settling in Stokes flow. Note
that after 𝑡𝑚𝑎𝑥 = 1013𝜏𝑝 all the studied shapes, i.e. spherical, prolate
ellipsoidal, triaxial ellipsoidal, and superellipsoidal, lead to overall
smaller deviations of the cloud trajectories compared to the spherical
particle cloud using shape factors, see Fig. 16 (d).
17
Next, we examine the resulting velocities of the particle clouds, as
shown in Fig. 17 (a, b). As can be seen in Fig. 17 (a), we observe the
largest deviations in the flow direction for the spherical shape and the
smallest differences for using the triaxial ellipsoid approximation. A
similar trend is also observed in the gravitational direction, Fig. 17 (b).
In addition, Fig. 17 (b) contains the analytically determined terminal
velocity of a sphere in Stokes flow, see Eq. (13), which is again in
excellent agreement with the numerically obtained spherical cloud
motion (without shape factors).

In addition, the relative deviation of particle kinetic and rotational
energy is investigated. As can be seen in Fig. 18, there are visible
deviations in kinetic and rotational energy for the particle clouds
studied. Considering the superellipsoidal particle cloud as a reference,
the triaxial approach achieves the best agreement in both kinetic and
rotational energy, while the spherical particle cloud differs the most.
Note that the deviation in rotational energy is significantly larger
than in kinetic energy for all shapes considered. The shortcomings of
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Fig. 20. Sketch of the simplified bifurcation model. Gravitational direction: 𝑦.

Fig. 21. Deposition efficiency DE [−] in a simplified bifurcation for prolate ellipsoid
with 𝜆 = 20. DE denotes ratio of deposited particles to injected particles.

Fig. 22. Deposition efficiency DE [−] in a simplified bifurcation for sphere, prolate
ellipsoid, triaxial ellipsoid and superellipsoid approximation of the pollen replica
presented in Section 3.4.2. DE denotes ratio of deposited particles to injected particles.

A, B, C, D2.

both the spherical and prolate ellipsoidal shape approximations are
apparent, as the errors in the rotational energy reach up to �̄�∗

𝑟𝑜𝑡 =
20% for the sphere without shape factors and �̄�∗

𝑟𝑜𝑡 = 10% for the
ellipsoid particle cloud. Consequently, the rotational energy of the
superellipsoidal particle cloud cannot be sufficiently reproduced by
either spherical or prolate ellipsoidal particles.

In addition, Fig. 19 displays the probability of particle orientation at
𝑡𝑚𝑎𝑥 = 1013𝜏𝑝. For this purpose, we evaluate the angle between the long
axis 𝑎 of each particle and the streamwise flow direction. In Fig. 19 we
18
have included the initial particle orientation at the time of injection and
the results of the superellipsoidal particle cloud for reference. Fig. 19
clearly shows the importance of an accurate shape approximation
for reliable statistical data on particle orientation, since the resulting
distribution of particle orientation strongly depends on the chosen
approximation shape. As shown, there is no preferred orientation for
the superellipsoidal particles, while we observe a preferred orientation
for the prolate ellipsoidal particles, which tend to align with the flow
direction. We also find that the orientation of the spherical particles
resembles the initial injection distribution. In addition, we find that the
application of shape factors to rotating spheres does not significantly
change the obtained rotational distribution at 𝑡𝑚𝑎𝑥 = 1013𝜏𝑝.

3.5. Bifurcation

The final validation case refers to a simplified 3D bifurcating
airway. The diameters of the parent and daughter airways are 𝐷𝑖𝑛 =
6 mm, based on the third generation of Weibel’s symmetric lung
model, (Weibel, 1963), and are consistent with the setup employed
by Feng and Kleinstreuer (2013). For a sketch of the computational
domain, see Fig. 20.

The selected airway model has a bifurcation angle of 𝛼 = 60◦

according to Zhang et al. (1996) and Feng and Kleinstreuer (2013).
Note that no information on the radius at the separation into two tubes
is given. The Reynolds number considered is Re = 500 to mimic normal
breathing conditions in the third generation, (Zhang et al., 1996). In
this validation, we analyze the deposition efficiency for different Stokes
numbers St by considering prolate particles with aspect ratio 𝜆 = 20 and
particle density 𝜌𝑝 = 2400 kg∕m3, see Zhang et al. (1996). In agreement
with Feng and Kleinstreuer (2013), we assume a uniform inlet velocity
and release 105 randomly distributed fibers. Moreover, the elongated
prolate spheroids are injected with a random orientation and an initial
velocity of zero at the parent inlet site. In this study, deposition
is assumed to occur when particle–wall contact is established, thus
depositition by impaction as well as interception (particle comes close
enough to a wall that a particle edge touches the wall surface) are
included, see Section 2.3. It is an important mechanism for elongated
particles such as fibers for which the ratio between length and diameter
is large. Fibers are assumed to escape the geometry if they dwell in the
bifurcation model ten times longer than the average residence time of
the flow, see Zhang et al. (1996). For convenience, Table 4 summarizes
the computational details of the particle tracking.

To validate the developed wall interaction model for superellip-
soids, we draw on the numerical results of Zhang et al. (2015) and Feng
and Kleinstreuer (2013) as references. As shown in Fig. 21, there is
excellent agreement of the deposition efficiency with the numerical
results of Feng and Kleinstreuer (2013) for all particle Stokes num-
bers studied, with the deposition being slightly reduced for particle
Stokes numbers of order St = 10−2. Consequently, we consider the
novel superellipsoidal deposition model (described in Section 2.3) as
validated.

Furthermore, we apply the novel superellipsoid particle tracking
including the validated superellipsoid deposition model to study the
deposition efficiency within the bifurcation used for the different par-
ticle shapes described in Section 3.4.2. As shown in Fig. 22, a good
agreement is obtained between the deposition efficiency for prolate and
triaxial ellipsoids as well as for superellipsoids in the studied range of
particle Stokes numbers. In the case of the spherical particle cloud,
slight deviations are visible in the intermediate range of the particle
Stokes numbers examined.

In a next step, we compare the position statistics in streamwise (𝑥)
and in gravitational direction (𝑦) for the particle clouds with 𝑑𝑒𝑞 =
15 μm (St ≈ 0.38). The obtained position probabilities are shown
in Fig. 23. As displayed, the overall distribution of the considered
particle shapes is almost identical. However, there are slight deviations
in the distribution of the prolate ellipsoids, since the deposition of
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Fig. 23. 𝑥∕𝑑𝑒𝑞 and 𝑦∕𝑑𝑒𝑞 (𝑦 ∶ gravitational direction) deposition probability in a simplified bifurcation for sphere, prolate ellipsoid, triaxial ellipsoid and superellipsoid approximation
of the pollen replica with 𝑑𝑒𝑞 = 15 μm, see Section 3.4.2 A, B, C, D2.
Table 4
Computational details of particle tracking.
𝑡 Integration scheme Forces Wall interaction 𝑛 particles 𝜑0, 𝜃0, 𝜓0 𝑣0, 𝜔0

Implicit Euler Drag & Gravity Impaction & Interceptiona 105 Random (0 0 0)

aParticle comes close enough to a wall that a particle edge touches the wall surface.
the particles already occurs at lower 𝑥∕𝑑𝑒𝑞 due to a more pronounced
interception effect.

Furthermore, we evaluate the deposition angle of the considered
particle shapes, i.e the angle between the wall normal and particle long
axis 𝑎. The obtained deposition probabilities are presented in Fig. 24.
As indicated, the particle shape can affect the deposition angle on the
bifurcation wall. In particular, the prolate ellipsoidal shape develops
a preferred deposition angle at 𝛩 = 𝜋∕2. In contrast, the variations
between spherical, triaxial, and superellipsoidal deposition orientations
are negligible and remain statistically distributed.

4. Conclusions

In this study, we present force and torque models for superellip-
soidal particle shapes based on the superellipsoid surrogate approach
presented by Štrakl et al. (2022a,b) for simulating the motion of parti-
cles with superellipsoidal shape, developed in OpenFoam® and based
on Lagrangian particle tracking in RANS-resolved turbulent flow. The
main objective of the present study is to evaluate the trajectory and ro-
tational motion of superellipsoidal particles in comparison with spheres
(with and without shape factors) as well as prolate and triaxial ellip-
soids. The main achievement of the present work is the implementation
and validation of a general superellipsoid particle tracking including
a wall deposition model, which can be used in CFD to approximate
the dynamics and deposition (inertial impaction and interception) of
more complex shaped particles. To prove the accuracy and reliability
of the generated model for Lagrangian tracking of superellipsoidal par-
ticles, numerical and experimental validations were performed, i.e. a
lid-driven cavity flow, a pipe flow, and a simplified bifurcation case.

First, the superellipsoid particle tracking was validated with numer-
ical models for spheres (Tsorng et al., 2008) and prolate ellipsoids (Cui
et al., 2018b) in a lid-driven cavity flow, showing excellent agreement
of the results under the examined Stokes flow conditions. As a sec-
ond test case, the results of the superellipsoid particle tracking were
compared with numerical studies of prolate spheroids transported in
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a pipe flow (Tian et al., 2012; Cui et al., 2018b). Herein, we investi-
gated the accuracy of our superellipsoid surrogate approach presented
in Štrakl et al. (2022a) compared to the reference analytical model
of prolate ellipsoids. To this end, mainly negligible deviations were
observed, however, in the case of strongly elongated particles, e.g. 𝜆 =
14, the rotational motion deviated slightly even for small errors in
the novel superellipsoid surrogate approach proposed by Štrakl et al.
(2022a). Third, a realistic pollen particle was approximated with differ-
ent shapes, i.e. sphere (with or without shape factors), prolate ellipsoid,
triaxial ellipsoid, and superellipsoidal shape. The tensor coefficients of
the pollen replica were most accurately reproduced by the superel-
lipsoidal shape and least accurately by the spherical shape including
shape factors. We observed that when modeling complex particles,
such as the pollen particle considered, simple shape approximations
such as spheres or ellipsoids cannot accurately reproduce the motion,
especially rotational motion, of the superellipsoidal reference particle.
Besides, better agreement with the reference particle (superellipsoid)
is achieved with increasing complexity of the particle shape as for
example the triaxial ellipsoid. However, considering the motions of the
particle clouds, the deviations between the studied shapes are small
after the considered simulation time. Nevertheless, the obtained results
highlight the importance of the presented novel superellipsoidal ap-
proach for improved orientation prediction for realistic (non-spherical)
particles. In addition, we proposed a novel superellipsoidal wall colli-
sion model. This model was applied to a simple bifurcation and showed
good agreement with results from the literature, see Zhang et al.
(2015) and Feng and Kleinstreuer (2013). Future work will focus on
numerical tracking of micro-sized superellipsoidal particles moving in
more complex geometries, e.g. human lung replicas. For more complex
shaped particles, the translation, rotation and deformation resistance
tensor cannot be determined with the surrogate model of Štrakl et al.
(2022a) and all tensor components have to be determined individually.
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Fig. 24. Probability function of particle deposition orientation in simple bifurcation model for 𝑑𝑒𝑞 = 15 μm. initial distribution of particle orientations, A, B, C, D2.
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