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Abstract
In the framework of computational studies of particulate multiphase flow systems, either dilute or dense, particle–particle
as well as particle–wall collisions need to be considered, which in the case of nonspherical particle shapes still presents a
computational challenge. In this study, we present an efficient numerical implementation of a novel superellipsoidal particle
collision model that can be used in general fluid flows. The superellipsoid shape formulation can be viewed as an extension
of spherical or ellipsoidal shapes and can be used to represent spherical, ellipsoidal, cylindrical, diamond-like and cubic
particles by varying solely five shape parameters. In this context, we present a fast, stable Newton–Raphson-based method for
modeling frictional collisions of nonspherical superellipsoidal particles, and demonstrate the performance of our algorithms.

Keywords Multiphase flow · Lagrangian particle tracking · Superellipsoid · Collision · Friction

1 Introduction

1.1 Motivation

Particulate systems arewidely used in various industries such
as cement, petrochemical, wastewater treatment, and phar-
maceutical, where different types of particles are transported,
mixed, stored, or segregated [1, 2]. In addition, nonspherical
particles are widely present in nature, from the composi-
tion of blood to dust particles in the air. To increase the
efficiency of industrial processes or improve pharmaceuti-
cal applications such as targeted drug delivery, the physics
of particulate systems must be well understood [3]. How-
ever, the understanding of the motion of arbitrarily shaped
solids suspended in flows is still sparse [1]. To date, most
researchers have focused on spherical particles due to their
simple motion description, although, as mentioned above,

B Jana Wedel
jana.wedel@fau.de

1 Institute of Applied Mechanics, Friedrich-Alexander
Universität Erlangen-Nürnberg, Egerlandstraße 5, 91058
Erlangen, Germany

2 Faculty of Mechanical Engineering, University of Maribor,
Smetanova 17, 2000 Maribor, Slovenia

3 Glasgow Computational Engineering Centre, University of
Glasgow, Glasgow, UK

real particles are in general irregularly shaped [3]. As argued
by Lu et al. [3], the applicability of conclusions based on the
assumption of spherical particles to real, arbitrarily shaped
particle systems is usually questionable. In limited cases,
such as aerosol transport, the assumption of a spherical shape
is generally justified, see, e.g. [4–7]. Clearly, the behaviour of
realistic arbitrary particles differs from the spherical assump-
tion, since the orientation and rotation of the particle in the
flowbecome important, leading to an altered translational and
rotational motion. In addition, particle–particle or particle–
wall collisions require a more complex description.

As Marchioli et al. [8] have shown prolate ellipsoidal
particles in turbulent flows tend to cluster into groups cre-
ating fiber-free regions. This cluster formation increases
the chance of particle–particle collisions in turbulent flows.
Therefore, the development of efficient methods tomodel the
motion of arbitrarily shaped particles and their collisions in
flows is of utmost importance for understanding real particle
systems [3].

1.2 Particle-shape description

In most applications, the shape of the particles has a non-
negligible influence on the behaviour of the dispersed phase,
so that modelling of non-spherical particles is required. Sev-
eralmethods are available for the simulation of particle-laden
flows with respect to the handling of the dispersed phase,
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which we briefly introduce below. These options include the
finite-size particle approach (geometric construct of the parti-
cle) and the point-particle approach [9], in which the particle
shape is represented by a function of a local coordinate sys-
tem [10].

1.3 Option 1: Geometrical construct of the particle
shape

In the finite-size particle approach, the particle surface is
resolved geometrically. In this field, the coupling of the Dis-
crete ElementMethod (DEM) [11], and Computational Fluid
Dynamics (CFD) is widely used [9]. This Computational
Fluid Dynamics-Discrete Element Method (CFD-DEM) is
increasingly employed to study particle-laden flows such as
sediment transport, see [12, 13]. Particles are tracked indi-
vidually in a Lagrangian framework, which provides more
insight compared to describing the dispersed phase as a con-
tinuum [14].

In the literature, there are many different techniques to
account for the nonsphericity of finite-size particles in DEM.
According to Lu et al. [3], the most widely used approaches
to model non-spherical particles in DEM are polygonal par-
ticles (polygon formulation) [15, 16], or composite particles
[2, 17, 18]. Lu et al. [3], provides a thorough summary and
review of the main theoretical developments in the field of
nonspherical DEM.

A simple method for generating nonspherical particles
is called the multi-sphere composite method, developed by
Favier et al. [19] and Jensen et al. [20]. This modelling
approach exploits a set of spherical particles (prime spheres)
glued together to represent arbitrarily shaped particles [3].
As stated by Abbaspour-Fard [21], the main advantages
of the composite method are its contact detection effi-
ciency, since it uses a sphere-to-sphere contact detection
for arbitrarily shaped particles, and its comparatively simple
implementation. Third et al. [17, 18] performed simulations
of nonspherical solids, approximating shapes by combin-
ing two spheres of different sizes. Kruggel-Emden et al.
[22] performed a study on the validity of composite parti-
cle DEM and concluded that the number of prime spheres
used to approximate arbitrary particles has a strong impact
on the computation time as well as the accuracy of the shape
description. It should be noted that themulti-sphere approach
strongly depends on the number of prime spheres used and
usually results in high computational costs to ensure a suf-
ficiently smooth representation of the particle shape [3],
otherwise the particles can result in a too knobbly repre-
sentation of the real particle [10]. Another disadvantage of
the composite method is the occurrence of multiple contact
points [22], since approximating a convex shape (such as an
ellipsoid) with more than one sphere always results in a non-
convex shape [1]. The more composite spheres are used, the

higher the number of contacts between particles [23]. There-
fore, a major challenge in the composite method is the choice
of an appropriate number of composite spheres [1].

Another way to represent non-spherical particles in DEM
is to use polygon particles. As Houlsby [10] notes, contact
detection simplifies to the main task of detecting edge or
corner contacts when these polygon particles are restricted
to convex shapes. Note that the computation time increases
proportionally to the product of the number of vertices of the
adjacent particles [10].

Hogue and Newland [15] simulated falling dominoes
using the polygon formulation and achieved good agreement
with experimental measurements. The authors divided the
contact algorithm into a set of geometric problems by dis-
cretizing nonspherical particles in a two-dimensional polar
coordinate systemwith vertices connected by segments [15].
Furthermore, Feng and Owen [16] present a 2D polygonal
contact model for corner contacts, where the normal con-
tact force is assumed to point in the direction of the fastest
decrease in contact energy. Amain drawback of the polygon-
based method is its complexity and time-consuming nature,
since it considers contacts involving faces, vertices, or edges
separately [3]. Moreover, the extension to 3D is not straight-
forward, since collisions of 3D polyhedra collisions involve
a range of contact options such as vertex-face as well as
edge-edge contacts [10]. In this context, Latham andMunjiza
[24, 25] investigated the use of simple polyhedral shapes, i.e.
tetrahedral and cubic particles of different sizes and aspect
ratios.

In addition to DEM, the immersed boundary method
(IBM) is another option for modelling particles of finite size
and coupling the dispersed phase with CFD. Note that IBM
provides a full-way coupling between the dispersed and con-
tinuous phases, since the flow over the particles is solved
[9]. There are a variety of models targeting spherical parti-
cle collisions in the framework of IBM [26, 27]. In addition,
Ardekani et al. [28] studied sedimenting spheroidal particles
using IBM and presented a collision algorithm for such par-
ticles based on the soft sphere model [28]. In this study, the
authors approximated the spheroids as spheres with the same
mass as the reference spheroid and a radius equal to the local
curvature at the contact point. In addition, Hosaka et al. [29]
studied the suspension of red blood cells in a channel flow,
including collisions (platelets-platelets and platelets-wall)
and adhesion effects using the IBM flow solver. Recently,
Nagata et al. [9] proposed a collision algorithm for arbitrar-
ily shaped particles for flow solvers using IBM based on
the level set and ghost cell method [30]. In this study, the
authors investigated collisions between spherical, cylindri-
cal, and red-blood-cell shaped objects, as well as interactions
between spheres andflat plates, and obtained good agreement
with previous studies. As Hosaka et al. noted [29], the advan-
tages of IBM are the lower computational cost of creating the

123



Computational Particle Mechanics

particle-fitted mesh/surface and the re-creation of the mesh
in the case of moving or deforming particles.

1.4 Option 2: Functional shape representation

An alternative way to describe particle shapes is to define the
particle as a function of a local coordinate system [10]. There
are two main options for functional shape representation,
i.e. discrete function (DFR) [3, 31] or continuous function
representation (CFR) [2, 3, 32]. In the CFR method, the
particle is described by a surface equation, such as the com-
monly employed superellipsoid surface equation proposed
by Barr [33]. Note that nonlinear constrained optimization
approaches are required when using CFR contact detection
methods [3]. As noted by Cleary et al. [34], the convergence
difficulties of this optimization increase significantly as the
squareness of particles increases. Mustoe and Miyata [35]
studied cubic particles (using a superellipsoidal shape for-
mulation) in a 2D horizontal rotating cylinder. The authors
investigated the effect of squareness on the dynamic angle of
response and found that this angle has an upper limit around
40 ◦ [35].

In contrast to CFR, the discrete function representation
(DFR) method proposed by Williams and O’Connor [31]
describes the particle surface using a specified number of
discrete points. It is discussed that the DFR method could
be a justifiable alternative to the above methods due to its
computational efficiency and applicability to a wide range
of shapes [36]. The computational cost of DFR scales with
the number of nodes N discretizing the particle surface with
O(N ) [3]. Although DFR is often described as computation-
ally less expensive than the above methods, it requires some
difficult decisions, such as how to conveniently discretize a
given particle, i.e. the number of discretization points for suf-
ficient resolution, the distribution of points over the surface,
and a method to efficiently determine the contact point based
on the chosen nodes [3].

1.5 Novelty and Advantages of the proposed
approach

This paper presents a novel frictional collision model for
nonspherical particles in particle–particle as well as particle–
wall contacts based on the superellipsoid surface equation
(CFR). By using CFR, we can avoid a number of difficulties,
such as the discretization of a given particle shape, which
is required in finite-size particle and DFR approaches. In
addition, the model does not need to separately account for
the contacts between faces, vertices, and edges, which is a
main drawback of the polygon formulation.

Moreover, the model is applicable to any superellipsoidal
particle collisions in flows. In this context, we present a novel
approach to determine the collision points that ensures fast

and robust identification while maintaining common nor-
mals. Moreover, the approach is capable of using tens of
thousands of particles while performing simulations requir-
ing thousands of time steps, since no discretization of particle
surfaces is required, which is one of the main drawbacks
of finite-size particle approaches such as DEM or IBM for
non-spherical particles. In addition, unlike many other tech-
niques, such as polygonal formulation, the novel approach is
easily (and readily) extended to 3D. In combination with our
previously presented superellipsoid force models (see [32,
37]), which allow accurate modelling of the motion of sus-
pended nonspherical particles, i.e. trajectories and rotations,
we take the simulation of nonspherical particles in flows one
step further by including frictional particle–particle as well
as particle–wall collisions.

1.6 Organisation of paper

This paper is organised as follows: The motion of superel-
lipsoidal particles in multiphase flows is briefly discussed in
Sect. 2. In addition, in Sect. 3, the contact detection methods
available in the literature are first presented. Then, our novel
efficient contact detection algorithm for superellipsoidal par-
ticles is proposed and validated. In Sect. 4, we present the
collisionmodel used for superellipsoid-superellipsoid aswell
as superellipsoid-wall collisions. Validation of simulations
of superellipsoid-wall and superellipsoid-superellipsoid col-
lisions based on the proposedmethod is presented along with
demonstrative examples in Sect. 5, followed by themain con-
clusions of the study in Sect. 6.

2 Superellipsoidal particles

Notation: In this work, we express tensors of various
orders using bold italic font. First-order tensors (vectors)
are denoted by bold italic lowercase letters such as a, while
second-order tensors are denoted by bold italic uppercase let-
ters such as A. Using Einstein’s summation convention, we
can write the coordinate representation in Cartesian coordi-
nate systems with base vectors e′

i , ei (i = 1, 2, 3) as follows:

a = a′
i e

′
i = ai ei and A = A′

i j e
′
i ⊗ e′

j = Ai j ei ⊗ e j ,

where a′
i , ai and A′

i j , Ai j are the corresponding coefficients
in the coordinate system e′

i , ei , respectively. The tensor coef-
ficients a′

i , ai and A′
i j , Ai j can be arranged in coefficient

matrices, which we denote by underlined italic letters:

a′ =
⎡
⎣
a′
1

a′
2

a′
3

⎤
⎦ , a =

⎡
⎣
a1
a2
a3

⎤
⎦ and A′ =

⎡
⎣
A′
11 A′

12 A′
13

A′
21 A′

22 A′
23

A′
31 A′

32 A′
33

⎤
⎦ ,
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Fig. 1 Representative set of superellipsoidal shapes with λ1 > λ2 and
varying shape factors ε1 = [0.2 − 1.8], ε2 = [0.2 − 1.8]

A =
⎡
⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ .

The rotation matrix R transforming coefficients with respect
to the base vectors ei to coefficients with respect to the base
vectors e′

i follows as

R =
⎡
⎣
R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦ with Ri j = e′

i · e j . (1)

Taken together, coefficient matrices of vectors and second
order tensors transform as

a′ = R a and A′ = R A RT . (2)

2.1 Superellipsoidal surface equation

In this work we employ the superellipsoid surface equation
as proposed by Barr [33]. This equation, formulated in the
particle frame of reference (pFoR) [x ′, y′, z′], gives [33]:

S(x ′, y′, z′) =
[[ |x ′|

a

]2/ε2
+

[ |y′|
b

]2/ε2]ε2/ε1

+
[ |z′|

c

]2/ε1
− 1 = 0 , (3)

where a, b and c denote the half-lengths of the considered
particle in the direction of the principle axes. In the following,
we employ that c ≤ b ≤ a and λ1 = a/c ≥ λ2 = b/c.
Moreover, ε1 and ε2 control the squareness of the particle,
determining the cross-sectional shape in the y′ − z′ (ε1) and
x ′ − z′ (ε1) as well as x ′ − y′ plane (ε2) [2, 3].

Figure1 displays a set of representative superellipsoidal
particles with λ1 > λ2 to illustrate the variety of shapes that
can be generated with superellipsoids. Note that an ellip-
soidal shape is obtained by setting the shape parameters to
ε1 = ε2 = 1 and a sphere when additionally a = b = c
(λ1 = λ2 = 1).

2.2 Motion of a superellipsoidal particle

The trajectory of an arbitrarily shaped particle is determined
by its interaction with the surrounding fluid flow [38]. Each
particle i obeys Newton’s second law and is tracked individ-
ually by solving its trajectory explicitly

mi
dvi
dt

= Fi , (4)

where mi and vi are the mass and velocity of particle i
and d/dt denotes the total time derivative. Furthermore, Fi

denotes the total force acting on the particle i [1]. Note that
sufficiently small particles (e.g. micro- and submicron parti-
cles) can be described as rigid.We describe particle transport
in an Euler-Lagrangian framework using the Maxey–Riley–
Gatignol equation of motion [38], for small rigid particles.
In addition, we employ the drag expression for arbitrarily
shaped particles as proposed by Brenner [39]. Thus, the drag
force FD exerted on a superellipsoidal particle moving in a
fluid is obtained by [32]:

FD =
∫

�

σ · nd� = πρ f ν f cK · [u − v] , (5)

where t = σ · n labels the boundary traction exerted on the
boundary � of the particle, σ the Cauchy stress tensor, n the
normal particle surface vector, K the translational resistance
tensor, c the semi-minor axis of the superellipsoidal particle,
ρ f the fluid density, ν f its kinematic viscosity, and u the
velocity of the fluid at the position of the particle center.
The coefficient matrix of the resistance tensor in the particle
reference frame (pFoR) K ′ is related to its counterpart K in
the inertial frame of reference (iFoR) via the rotation matrix
R:

K ′ = R K RT . (6)

Followingly, we write:

mp
dv

dt
= mp

[
ρp−ρ f

]+Vpρ f
Du
Dt

−1

2
Vpρ f

[
dv

dt
−du

dt

]

+πρ f ν f cK · [u−v] (7)

using the superellipsoidal surrogate approach as presented in
Štrakl et al. [32]. In Eq. (7), we considers gravity, buoyancy,
pressure gradient, added mass and drag force, whereas time
history effects, aerodynamic lift as well as higher order terms
are neglected [40]. Note that in Eq. (7), D/Dt = ∂/∂t +[u ·
∇] represents the time derivative following the fluid element
and d/dt = ∂/∂t + [v · ∇] describes the time derivative
following the Lagrangian particle.
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Using L0 and u0 to denote the characteristic scales of the
problem and the fluid velocity, respectively (i.e. Reynolds
number Re = u0L0/ν f ) [40], we obtain the dimensionless
parameters v∗ = v/u0, u∗ = u/u0, t∗ = tu0/L0. It follows
that we can write Eq. (4) as [38, 39]:

dv∗

dt∗
= A

St

[
v∗
s + c

3deq
K · [

u∗ − v∗]
]

+ 3

2
R

∂u∗

∂t∗

+R

[[
u∗ + 1

2
v∗

]
· ∇

]
u∗, (8)

where v∗
s denotes the dimensionless settling velocity, deq the

volume equivalent diameter of a sphere, and A and R dimen-
sionless parameters depending on the fluid-particle density
ratio [40]:

R = ρ f

ρp + 0.5ρ f
, A = ρp

ρp + 0.5ρ f
. (9)

Furthermore, St labels the Stokes number, which is the ratio
of the characteristic particle response time τp to a charac-
teristic time of the flow τ f . The Stokes number of a particle
with volume equivalent sphere diameter deq is obtained as
follows:

St = τp

τ f
= ρp

ρ f

d2equ0

18ν f L0
. (10)

Using the dimensionless Eq. (8), we note that the factor
A/St scales the importance of gravity and the drag force,
while R scales the pressure gradient and the added mass
term [40]. Thus, the latter forces can be considered negligible
compared to the gravity and buoyancy force FGB and the
drag force FD when ρp 	 ρ f as R 
 1, see Eq. (9) [40].
Moreover, even if ρp ≈ ρ f , we can consider the effects of
the additional forces to be minor compared to FGB and FD

in the case of a sufficiently small Stokes number (St 
 1),
since consequently A/St 	 1, see Eqs. (9–10).

To obtain the angular velocity of a particle, an accu-
rate determination of the particle orientations is crucial
[1]. Moreover, the point of contact between nonspherical
particles (or a nonspherical particle and a wall) depends
on the particle orientation. In general, the orientation of
an arbitrarily shaped particle is described by quaternions
e = [e0, e1 , e2 , e3]T (also referred to as Euler parame-
ters) [41], which are singularity-free compared to the Euler
angles [φ, θ , ψ] and describe a rotation of the iFoR r =
[x, y, z]T with respect to the pFoR r ′ = [

x ′, y′, z′
]T [1],

i.e. r ′ = R r . The Euler parameters are subject to the con-
straint e20 + e21 + e22 + e23 = 1 [42]. The quaternions e can be

constructed from the Euler angles as follows [41]:

e =

⎡
⎢⎢⎣
e0
e1
e2
e3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
cos [0.5 [φ + ψ]] cos [θ/2]
cos [0.5 [φ − ψ]] sin [θ/2]
sin [0.5 [φ − ψ]] sin [θ/2]
sin [0.5 [φ + ψ]] cos [θ/2]

⎤
⎥⎥⎦ . (11)

The rotation matrix R is constructed from the quaternion
components using [1]:

R =⎡
⎣
e20 + e21 − e22 − e23 2[e1e2 + e0e3] 2[e1e3 − e0e2]
2[e1e2 − e0e3] e20 − e21 + e22 − e23 2[e2e3 − e0e1]
2[e1e3 + e0e2] 2[e2e3 − e0e1] e20 − e21 − e22 + e23

⎤
⎦

=
⎡
⎣
m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎦ , (12)

where mi j represent elements of R expressed with Euler
parameters. Note that the evolution of the quaternions is
related to the angular particle velocity in the particle frame
ω′ = [

ωx ′ , ωy′ , ωz′
]T :

⎡
⎢⎢⎣
de0/dt
de1/dt
de2/dt
de3/dt

⎤
⎥⎥⎦ = 1

2

⎡
⎢⎢⎣

−e1 −e2 −e3
e0 −e3 e2
e3 e0 −e1

−e2 e1 e0

⎤
⎥⎥⎦ ω′ . (13)

The rotational motion of an arbitrarily shaped particle mov-
ing in a fluid can be described in the pFoR as follows:

Tx ′ = Ix ′
dωx ′

dt
− ωy′ωz′

[
Iy′ − Iz′

]
, (14)

Ty′ = Iy′
dωy′

dt
− ωz′ωx ′

[
Iz′ − Ix ′

]
, (15)

Tz′ = Iz′
dωz′

dt
− ωx ′ωy′

[
Ix ′ − Iy′

]
, (16)

where Ix ′ , Iy′ , Iz′ denote the principal values of the inertia
tensor of the particle. In addition, Tx ′ , Ty′ , Tz′ label the hydro-
dynamic torques on the particle with respect to the principal
axes. The principal values of the inertia tensor for a superel-
lipsoidal particle are [43]:

Ix ′ = 1

2
ρabcε1ε2

[
b2B

(
1.5ε2,

ε2

2

)
B

(ε1

2
, 2ε1 + 1

)

+4c2B
(ε2

2
,
ε2

2
+ 1

)
B (1.5ε1, ε1 + 1)

]
, (17)

Iy′ = 1

2
ρabcε1ε2

[
a2B

(
1.5ε2,

ε2

2

)
B

(ε1

2
, 2ε1 + 1

)

+4c2B
(ε2

2
,
ε2

2
+ 1

)
B (1.5ε1, ε1 + 1)

]
, (18)

Iz′ = 1

2
ρa b c ε1 ε2

[
a2 + b2

]
[
B

(
1.5 ε2,

ε2

2

)
B

(ε1

2
, 2 ε1 + 1

)]
, (19)
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where B is related to the Gamma function as

B(x, y) = �(x)�(y)

�(x + y)
. (20)

Considering both rotational and shear flow contributions,
the resultant torque T is obtained using [32]:

T =
∫

�

r × td� =̂ πμc3

⎡
⎣�′

⎡
⎣
f ′
g′
h′

⎤
⎦ + �′

⎡
⎣

ξ ′ − ωx ′
η′ − ωy′
χ ′ − ωz′

⎤
⎦

⎤
⎦ ,

(21)

where �′ and �′ denote the rotation and deformation resis-
tance coefficient matrix, respectively. Moreover, f , g, h are
the off-diagonal elements of the deformation rate tensor and
ξ , η and χ label the spin tensor components, which are deter-
mined using:

f ′ =1

2

[
∂uz′

∂ y
+ ∂uy′

∂z

]
, g′ = 1

2

[
∂ux ′

∂z
+ ∂uz′

∂x

]
,

h′ =1

2

[
∂ux ′

∂ y
+ ∂uy′

∂x

]
, (22)

ξ ′ =1

2

[
∂uz′

∂ y
− ∂uy′

∂z

]
, η′ = 1

2

[
∂ux ′

∂z
− ∂uz′

∂x

]
,

χ ′ =1

2

[
∂uy′

∂x
− ∂ux ′

∂ y

]
. (23)

3 Contact detection algorithms

3.1 Brief review of the state-of-the-art

Akey step of the particle–wall as well as the particle–particle
collision model is the determination of the contact point.
The contact condition between two spherical particles is
well defined, since the contact exists only when the distance
between the particle centres is smaller than the sum of their
radii [44]. However, the detection of the contact between
nonspherical particles is usually not straightforward and its
determination still poses a major difficulty [2]. As Lin and
Ng [45], stated, there is no strictly defined ”correct” contact
point for nonspherical particles, since different methods may
lead to different contact points. The authors note that these
determined contact points and particle overlaps shouldmatch
with the analytical points in the case of two identical spheres
when different contact schemes are used [45].

For ellipsoidal particle collisions, several analytical
approaches have been proposed in the literature, including
intersection (IS) [46–48], geometric potential (GP) [2, 44,
45], and common normal (CN) algorithms [34, 45, 49, 50].
Figure2 illustrates these contact detection methods.

The IS algorithm for ellipses (2D) was proposed by Ting
[46, 48], where the contact point pc is defined as themidpoint
of the line connecting the two intersection points A, B of the
colliding ellipses. The intersection points A and B are found
by solving a quartic equation obtained by combining the two
ellipse equations [45, 46, 48]. Figure2a is an illustration of
this 2D contact detection concept. Rothenburg and Bathurst
[47] proposed a similar approach, suggesting a slightly dif-
ferent formulation of the quartic equation. According to Lin
and Ng [45], one of the major challenges of the IS method is
that the generally small overlap of particles can lead to an ill-
conditioned quartic equation, resulting in a significant loss of
computational accuracy. In addition, the authors argue that
the IS method cannot be easily extended to 3D [45].

Ng [51] proposed a more stable contact detection algo-
rithm than the IS method based on a geometric potential
concept [45]. For the surface equation of an ellipsoid
E(x, y, z) = 0, a family of geometrically similar ellip-
soids with identical origin represents a varying value of the
potential � = E(x, y, z) [44, 45]. Figure2b illustrates this
concept of contact detection in a 2D example. As shown,
there are two points pc,1 and pc,2 that generate the lowest
potential to E2 and E1, respectively. A contact between the
two collision partners is given if the potential values at the
determined points are � ≤ 0 [44, 45]. The midpoint of the
line connecting pc,1 and pc,2 is identified as the contact point
[44, 45].

Lin andNg [44, 45], showed that the GP-algorithm has the
deficiency that the normal vectors of the colliding partners at
pc,1 and pc,2 may not be parallel. Thus, the authors proposed
a CN algorithm for colliding ellipsoidal particles [44, 45].
However, Kildashti et al. [50], demonstrated that the original
formulation of Lin and Ng [44, 45], does not guarantee that
the solution can satisfy the CN concept. Cleary et al. [34]
proposed a CN scheme in which the problem is reduced from
identifying two points (one on each collision partner) to one
point by reversing the time evolutions until particle contact
is established solely at a single point, while Wellmann et
al. [49] proposed minimizing the distance between the two
points.

In this study, we present a novel efficient Lagrange mul-
tiplier approach based on the CFR method [3], using a CN
approach to solve for the contact point numerically, with the
error tolerance set to c× 10−6, where c denotes the smallest
particle half axis.

3.2 The wall equation

Let a, b, c be three vectors defining three points on a plane
representing a plane wall. The normal to the wall nw can be
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Fig. 2 Sketch of common
contact detection schemes:
intersection (IS), geometric
potential (GP) and common
normal (CN)

(a) IS method (b) (c)GP method CN method

Fig. 3 Parametrisation of a plane (wall)

calculated using

nw = [c− a] × [b − a]
||[c− a] × [b − a]||2 . (24)

The equation of the wall (vizualised in Fig. 3) is

W (r) = nw · [r − a] = 0 . (25)

The partial wall derivatives are

∂W

∂x
= nx ,

∂W

∂ y
= ny,

∂W

∂z
= nz . (26)

3.3 Superellipsoid equation

The surface equation for prolate ellipsoids is extended to
superellipsoidal particles by using the inside-out function
proposed by Barr [33]. In the following, [x ′, y′, z′] denotes
the pFoR, where x ′ points in the direction of the semi-major
axis a. The surface of the superellipsoid is defined in the
local coordinate system as described in Eq. (3). In the global
coordinate system, the centre of mass of the superellipsoid is
at rc and the orientation is described by the Euler parameters
e = [e0, e1, e2, e3]T . A point on the surface of a superellip-
soid in the local coordinate system (pFoR) r ′ can be written
in the global coordinate system as

r = RT r ′ + rc, r ′ = [x ′, y′, z′]T = R [r − rc], (27)

which reads in index notation

r ′
i = mi j [r j − rc j ] . (28)

Note that R is the rotation matrix defined in Eq. (12) and RT

is its transpose.
We can express the superellipsoid surface equation with

global coordinates as

S =
[[

m11[x − xc] + m12[y − yc] + m13[z − zc]
a

] 2
ε2

+
[
m21[x − xc] + m22[y − yc] + m23[z − zc]

b

] 2
ε2

] ε2
ε1

+
[
m31[x − xc] + m32[y − yc] + m33[z − zc]

c

] 2
ε1 − 1

= 0 . (29)

Furthermore the unit normal vector ns at a point on the
superellipsoid can be determined using

ns = ∇S

||∇S||2 , (30)

which requires the determination of the surface gradient in
the global frame

∇S =
[
∂S

∂x
,

∂S

∂ y
,

∂S

∂z

]T

, (31)

as well as its magnitude ||∇S||2. In the context of our novel
collision detection, the partial derivatives of the superellip-
soid surface normals in the global frame are needed, for
which we introduce the derivatives of the surface gradient
and the magnitude of the surface gradient separately. The
first, second, and third order partial derivatives of the surface
gradient in the global frame are given in Appendix A.

3.4 Superellipsoid wall collision

Let us consider a wallW (r) and a superellipsoid S(r), which
is described by the shape parameters a, b, c, ε1, ε2 as well as
the center point rc and the orientation e of the particle.
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Fig. 4 Detection of collision point Pc,1 on wall and inside superellip-
soid

3.4.1 Part 1: Collision point on a wall and inside the
superellipsoid

Considering a point r , which is on the surface of the wall

W (r) = 0 (32)

and at the same time inside the superellipsoid

S(r) < 0 . (33)

We want to find an r that is deepest inside of S and at
the same time located on the wall surface, see Fig. 4. The
problem is then to find r such that

r = arg{min (S(r))} , (34)

with the constraint Eq. (32). In order to solve this opti-
mization problem, we use the Lagrange multiplier approach,
defining the Lagrangian as

L(r, λ) = S(r) + λW (r) . (35)

Using

∂L

∂x
= 0,

∂L

∂ y
= 0,

∂L

∂z
= 0,

∂L

∂λ
= 0, (36)

we obtain a nonlinear system of four equations for the
unknown location [x, y, z] and λ. The general formula of
partial derivatives of the Lagrangian with respect to x, y, z
renders:

∂L

∂xi
= ∂S

∂xi
+ λ

∂W

∂xi
, (37)

The full derivation of Eq. (37) can be found in Appendix B.
The derivative of the Lagrangianwith respect to the Lagrange

multiplier is

∂L

∂λ
= W (r). (38)

The system of equations for [x, y, z, λ] is thus

F1 =∂S

∂x
+ λ

∂W

∂x
= 0, F2 =∂S

∂ y
+ λ

∂W

∂ y
= 0

F3 =∂S

∂z
+ λ

∂W

∂z
= 0, F4 =W ,

(39)

where F4 can be rewritten as:

F4=W=nx [x − ax ]+ny[y − ay]+nz[z − az] = 0. (40)

In order to use theNewton–Raphsonmethod tofind a solution
of the system Eq. (58) we must provide the Jacobian

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂F1
∂x

∂F1
∂ y

∂F1
∂z

∂F1
∂λ

∂F2
∂x

∂F2
∂ y

∂F2
∂z

∂F2
∂λ

∂F3
∂x

∂F3
∂ y

∂F3
∂z

∂F3
∂λ

∂F4
∂x

∂F4
∂ y

∂F4
∂z

∂F4
∂λ

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)

The elements of the Jacobian using a general expression for
Fi , i = 1, 2, 3 render

∂Fi
∂x j

= ∂S

∂x j∂xi
+λ

∂W

∂x j∂xi
,
∂Fi
∂λ

=ni ,
∂F4
∂x j

=n j ,
∂F4
∂λ

=0 .

(42)

3.4.2 Part 2: Collision point on the superellipsoid with
identical normal

To obtain the collision point that is on the surface of the
superellipsoid and deepest inside the wall, the procedure
could be repeated as in Part 1 (Sect. 3.4.1) by exchanging the
constraint and the objective function: L2∗ = W (r) + λS(r).
However, this would not guarantee that the identified points
on the wall and superellipsoid have an identical (opposed)
normal. Thus, the problem is to find a point r that is located
on the superellipsoid surface and has a superellipsoid surface
normal ns = −nw, see Fig. 5, so the problem is to find r such
that

r = arg{min(nw · ns(r))} , (43)

with the constraint

S(r) = 0 . (44)
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Fig. 5 Detection of collision point Pc,2 on superellipsoid and inside
wall with common normal ns to nw

Thus, the Lagrangian is set up as:

L2 = nw · ∇S

||∇S||2︸ ︷︷ ︸
ns

+λS(r) . (45)

Using nw = [nx , ny, nz]T , Eq. (45) can likewise be written
as:

L2 =
[[

∂S

∂x

]2
+

[
∂S

∂ y

]2
+

[
∂S

∂z

]2]−1/2

︸ ︷︷ ︸
||∇S||−1

2[
nx

∂S

∂x
+ ny

∂S

∂ y
+ nz

∂S

∂z

]
+ λS(r) . (46)

The system of equations for (x, y, z, λ) is given as

Fi = ∂(||∇S||−1
2 )

∂xi
[nw · ∇S]

+||∇S||−1
2

∂(nw · ∇S)

∂xi
+λ

∂S

∂xi
=0, i=1, 2, 3, (47)

F4 = S(r) = 0. (48)

The elements of the Jacobian using a general expression for
Fi , i = 1, 2, 3 render

∂Fi
∂x j

= ∂(||∇S||−1
2 )

∂x j∂xi
[nw · ∇S] + ∂(||∇S||−1

2 )

∂xi

∂(nw · ∇S)

∂x j

+∂(||∇S||−1
2 )

∂x j

∂(nw · ∇S)

∂x j∂xi

+ ||∇S||−1
2

∂(nw · ∇S)

∂x j∂xi
+ λ

∂S

∂x j∂xi
= 0, (49)

∂Fi
∂λ

= ∂S

∂xi
,
∂F4
∂x j

= ∂S

∂x j
,
∂F4
∂λ

= 0. (50)

3.4.3 Algorithm

Combining Part 1 (Sect. 3.4.1) and Part 2 (Sect. 3.4.2), we
obtain the following algorithm, presented in Fig. 6. The wall
collision algorithm is designed to enable collision detection
for particles moving in complexmeshes. Themeshes possess
multiple plane boundary elements, further referred to as wall
patches, defining its wall.

The first section of the algorithm is called the pre-
evaluation. Here, we check whether there is a point on the
particle that is inside one of the wall patches of a user-defined
wall interaction range list. In this context, we use bound-
ing sphere and oriented bounding box intersection tests [1,
52] to investigate whether contact is generally possible. As
Ericson, [52], noted, testing bounding volume intersections
prior to complex geometric evaluations allows for signifi-
cant performance improvement by neglecting contact pairs
without overlapping bounding volumes, thereby reducing
the amount of work required to determine collisions and
saving computation time. If a contact is possible, the opti-
mization presented in Sect. 3.4.1 is solved numerically using
the Newton–Raphson method. At the moment of initial con-
tact, when the bounding box of the particle is in contact with
the wall patch, all bounding box edge points are checked
to determine the point of maximum overlap. The coordi-
nates of this point are then used as the initial estimate for the
Newton–Raphson procedure. In general, the pre-evaluation
determines the wall patch that has the largest overlap with
the current particle. This wall patch is then used as the colli-
sion partner of the particle in the full evaluation cycle. If no
overlap is found, we proceed with the evaluation of the next
particle.

3.5 Superellipsoid-Superellipsoid collision

Let us consider two superellipsoids: S1 and S2, which are
described by a1, b1, c1, ε1,1,ε2,1, rc,1, e1 and a2, b2, c2,
ε1,2,ε2,2, rc,2, e2, respectively.

3.5.1 Part 1: Collision point on particle 1 and inside
particle 2

A contact between the two particles is only possible, if there
exists an r , which is on the surface of S1,

S1(r) = 0 (51)

and at the same time inside of S2:

S2(r) < 0 . (52)
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Fig. 6 Particle–wall collision algorithm

The tasks is to find r such that

r = arg{min(S2(r))} , (53)

with the constraint of Eq. (51). In order to solve this opti-
mization problem, we employ a Langrangian defined as:

L(r, λ) = S2(r) + λS1(r) . (54)

The stationary conditions read

∂L

∂x
= 0 ,

∂L

∂ y
= 0 ,

∂L

∂z
= 0 ,

∂L

∂λ
= 0 , (55)

thus we obtain a nonlinear system of four equations for the
unknown location r and λ:

∂L

∂xi
= ∂S2

∂xi
+ λ

∂S1
∂xi

= 0. (56)

The full derivation of Eq. (56) can be found in Appendix C.
The derivative of the Lagrangianwith respect to the Lagrange
multiplier is

∂L

∂λ
= S1(r) = 0 . (57)

The system of equations for [x, y, z, λ] is

F1 = ∂L

∂x
, F2 = ∂L

∂ y
, F3 = ∂L

∂z
, F4 = ∂L

∂λ
. (58)

Furthermore, the elements of the Jacobian are

∂Fi
∂x j

= ∂S2
∂x j∂xi

+λ
∂S1

∂x j∂xi
,
∂Fi
∂λ

=∂S1
∂xi

,
∂F4
∂x j

=∂S1
∂x j

,
∂F4
∂λ

=0 .

(59)

3.5.2 Part 2: Collision point on particle2and inside particle 1

To obtain the contact point located on the surface of S2, we
define a virtual wall using the first identified collision point
pc,1 and the referring normalized surface gradient as the wall
normal n, see Fig. 7. We can thus use a similar approach as
in Sect. 3.4.2.

3.5.3 Algorithm

Combining Part 1 (Sect. 3.5.1) and Part 2 (Sect. 3.5.2), we
obtain the following algorithm, shown in Fig. 8. The first
section of the algorithm is called the pre-evaluation. Here, it
is first evaluated whether a particle lies in the user-defined
intersection range of the particle chosen as the sum of
the semi-major particle axis. Furthermore, it is evaluated
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Fig. 7 Detection of collision
point on superellipsoid 2 and
inside superellipsoid 1 with
common normal n

Fig. 8 Superellipsoid-superellipsoid collision algorithm

whether contact is generally possible by performing an ori-
ented bounding box intersection test, [1, 52]. If contact is
possible, optimization is performed, see Sect. 3.5.1, which is
solved numerically using a Newton–Raphson approach. At
the first moment of intersection, when the bounding boxes of
the particles are in contact, all bounding box edge points are
checked to determine the point of maximum overlap, which
is then used as the initial guess for the Newton–Raphson pro-
cedure. Generally, the pre-evaluation determines the particle
that has the largest overlap with the current particle. This par-
ticle is then used as the particle’s collision partner in the full
evaluation cycle. If contact has occurred, we store the colli-
sion partners in a collision list and neglect them for further
contact detection steps in the current time step. If no overlap

is detected, we proceed to evaluate the next particle and its
possible collision partners.

4 Collisionmodel for superellipsoids

Having defined the collision point and the normal, we derive
the collision model for superellipsoids. The problem to be
studied is an eccentric rigid body collision in 3D space. The
colliding particles are superellipsoids. The formulation itself
is based on the assumption that the particles are rigid and in
elastic contact (restitution coefficient εn ≤ 1) and that there is
possible friction between particle–particle and particle wall,
which is accounted for by the tangential restitution coeffi-
cient εt . We investigate two superellipsoidal particles with
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masses m1 and m2. Furthermore, we consider three coordi-
nate systems, the global coordinate system [x, y, z], the
particle coordinate system [x ′, y′, z′] located at the center
of mass of the particle and whose axis x ′ points in the direc-
tion of the semi-major axis of the superellipsoid. Above we
determined the point of contact P and the unit normal n to
the plane of contact, see Sect. 3. With n we define the col-
lision coordinate system [x ′′, y′′, z′′], where x ′′ points in
the direction of n. Figure9 illustrates the coordinate systems
used.

4.1 The collision frame of reference

The choice of the frame of reference is to some extent
arbitrary, but it is reasonable to choose such a frame that
simplifies the description of the collision model as much as
possible. Theorigin of the chosen reference frame, also called
the collision reference frame, is at the contact point P and
its unit basis vector e′′

1 is oriented in the direction of the
identified surface normal at that contact point. There are no
preferred orientations of the orthogonal unit basis vectors e′′

2
and e′′

3. We consider two collision partners identified by their
position r i , i = 1, 2, their orientation expressed by the Euler
parameters ei and the angular velocity ωi . For the evaluation
of the collision, all physical quantities must be represented in
a single reference frame, for which we choose the collision
frame [x ′′, y′′, z′′]. Figure9 illustrates the determination
of the collision frame. First, we obtain the particle position
vectors relative to the collision point r �

i , i = 1, 2 using the
particle position vectors r i , and the contact point position
vector r P :

r �
i = r i − r P , (60)

In the next step, we perform a rotational transformation of r�
i

to represent the vectors in the collision reference frame. Now
we may transform coefficient vectors defined in the global
frame [r�

i ,vi ] into the collision frame, by multiplication with
the rotation matrix R0, that transforms from global to colli-
sion frame of reference

r ′′
i = R0 r

∗
i , v′′

i = R0 vi . (61)

Moreover, the angular velocity ω′
i and the inertia matrix I ′,

which are defined in the reference frame of the particle bod-
ies, must be expressed in the collision frame. Thus, we start
with the definition of the rotation matrix, denoted as Ri ,
which represent the transformation from the fixed reference
frame of the i-th particle body to the collision reference frame
and Ri its coefficient matrix. These quantities of the body
fixed frames are rotated using the following rules:

ω′′
i = Ri ω

′
i , I ′′

i = Ri I
′
i Ri

T . (62)

Fig. 9 Two superellipsoidal particles undergoing collision

Using the above transformations, particle position coeffi-
cients r ′′

i , velocity coefficients v′′
i , angular velocity coeffi-

cients ω′′
i and inertia tensor coefficient matrix I ′′

i are now
available in the collision reference frame.

4.2 Conservation equations during collision

Let vi denote the particle velocity before and ci the particle
velocity after collision. The corresponding angular velocities
are ωi and ψ i . The conservation of linear momentum reads

m1v1 + m2v2 = m1c1 + m2c2 . (63)

The velocity of each particle at the contact point may be
calculated from the centre of mass velocity and the angular
velocity using

vi P = vi − ωi × r∗
i , ci P = ci − ψ i × r∗

i , (64)

where r∗
i points from the collision point to the respective par-

ticle center. The relative contact point velocity in the normal
direction before and after collision is connected by:

n · c2P − n · c1P = −εn [n · v2P − n · v1P ] , (65)

where εn = 1 refers to conservation of normal velocity. Since
we defined the collision reference frame by pointing e′′

1 in the
direction of the collision normal, the coefficient matrix of the
normal in Eq. (65) is simply n′′ = [1, 0, 0]T . This yields

c′′
2x + r ′′

2yψ
′′
2z − r ′′

2zψ
′′
2y − c′′

1x − r ′′
1yψ

′′
1z + r ′′

1zψ
′′
1y

=−εn

[
v′′
2x−r ′′

2zω
′′
2y+r ′′

2yω
′′
2z−v′′

1x+r ′′
1zω

′′
1y−r ′′

1yω
′′
1z

]
.

(66)

Sinceweconsider frictionwith the tangential restitution coef-
ficient εt = [−1, 1], where εt = 1 refers to conservation of
tangential velocity, the relative contact point velocity in the
tangential directions before and after collision are connected
by:

t i · c2P − t i · c1P = εt [t i · v2P − t i · v1P ] , (67)
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where i = 1, 2. Using t ′′1 = [0, 1, 0]T and t ′′2 = [0, 0, 1]T

we obtain

c′′
2y − r ′′

2xψ
′′
2z + r ′′

2zψ
′′
2x − c′′

1y + r ′′
1xψ

′′
1z − r ′′

1zψ
′′
1x

= εt

[
v′′
2y − r ′′

2xω
′′
2z + r ′′

2zω
′′
2x − v′′

1y + r ′′
1xω

′′
1z − r ′′

1zω
′′
1x

]

(68)

and

c′′
2z − r ′′

2yψ
′′
2x + r ′′

2xψ
′′
2y − c′′

1z + r ′′
1yψ

′′
1x − r ′′

1xψ
′′
1y

= εt

[
v′′
2z − r ′′

2yω
′′
2x + r ′′

2xω
′′
2y − v′′

1z + r ′′
1yω

′′
1x − r ′′

1xω
′′
1y

]
.

(69)

The conservation of angular momentum can be expressed for
each particle separately as

I i · ωi + r i × mivi = I i · ψ i + r i × mi ci . (70)

This is true since here the reference point for the balance
of angular momentum is the contact point, thus the contact
force does not contribute to the momentum.

4.3 Particle–particle collision

In order to set up a linear system of equations in the form of
A x = b we use the following algorithm: Thus we obtain A

Algorithm 1 Particle–particle collision
1: Use Eq. (63), Eq. (66,68,69), and Eq. (70). to set up a linear system

of equations

2: Solve for x =

[
c′′
1x , c′′

1y, c′′
1z, c′′

2x , c′′
2y, c′′

2z,

ψ ′′
1x , ψ ′′

1y, ψ ′′
1z, ψ ′′

2x , ψ ′′
2y, ψ ′′

2z

]T

and b as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0 m2 0 0 0 0 0 0 0 0
0 m1 0 0 m2 0 0 0 0 0 0 0
0 0 m1 0 0 m2 0 0 0 0 0 0

−1 0 0 1 0 0 0 r ′′
1z −r ′′

1y 0 −r ′′
2z r ′′

2y
0 −1 0 0 1 0 −r ′′

1z 0 r ′′
1x r ′′

2z 0 −r ′′
2x

0 0 −1 0 0 1 r ′′
1y −r ′′

1x 0 −r ′′
2y r ′′

2x 0
0 −m1r ′′

1z m1r ′′
1y 0 0 0 I ′′

xx I ′′
xy I ′′

xz 0 0 0
m1r ′′

1z 0 −m1r ′′
1x 0 0 0 I ′′

yx I ′′
yy I ′′

yz 0 0 0
−m1r ′′

1y m1r ′′
1x 0 0 0 0 I ′′

zx I ′′
zy I ′′

zz 0 0 0
0 0 0 0 −m2r ′′

2z m2r ′′
2y 0 0 0 I ′′

xx I ′′
xy I ′′

xz

0 0 0 m2r ′′
2z 0 −m2r ′′

2x 0 0 0 I ′′
yx I ′′

yy I ′′
yz

0 0 0 −m2r ′′
2y m2r ′′

2x 0 0 0 0 I ′′
zx I ′′

zy I ′′
zz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(71)

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1v
′′
1x + m2v

′′
2x

m1v
′′
1y + m2v

′′
2y

m1v
′′
1z + m2v

′′
2z−εn

[
v2x − ω2yr2z + ω2zr2y − v1x + ω1yr1z − ω1zr1y

]
εt

[
v2y − ω2zr2x + ω2xr2z − v1y + ω1zr1x − ω1xr1z

]
εt

[
v2z − ω2xr2y + ω2yr2x − v1z + ω1xr1y − ω1yr1x

]
I ′′
1xxω

′′
1x + I ′′

1xyω
′′
1y + I ′′

1xzω
′′
1z + m1r ′′

1yv
′′
1z − m1r ′′

1zv
′′
1y

I ′′
1yxω

′′
1x + I ′′

1yyω
′′
1y + I ′′

1yzω
′′
1z + m1r ′′

1zv
′′
1x − m1r ′′

1xv
′′
1z

I ′′
1zxω

′′
1x + I ′′

1zyω
′′
1y + I ′′

1zzω
′′
1z + m1r ′′

1xv
′′
1y − m1r ′′

1yv
′′
1x

I ′′
2xxω

′′
2x + I ′′

2xyω
′′
2y + I ′′

2xzω
′′
2z + m2r ′′

2yv
′′
2z − m2r ′′

2zv
′′
2y

I ′′
2yxω

′′
2x + I ′′

2yyω
′′
2y + I ′′

2yzω
′′
2z + m2r ′′

2zv
′′
2x − m2r ′′

2xv
′′
2z

I ′′
2zxω

′′
2x + I ′′

2zyω
′′
2y + I ′′

2zzω
′′
2z + m2r ′′

2xv
′′
2y − m2r ′′

2yv
′′
2x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(72)

4.4 Particle–particle collision (frictionless)

In the case of zero friction the impulse acts in the nor-
mal direction only, the tangential components of the particle
velocity at the contact point are conserved, i.e. v′′

iy = c′′
iy ,

v′′
i z = c′′

i z as well as the normal component of the angular
velocity n · ωi = n · ψ i , i.e. ω

′′
i x = ψ ′′

i x .
The following algorithm is used to solve for the unknown

final particle velocity and angular velocity for a particle–
particle collision without friction:

Algorithm 2 Particle–particle collision (frictionless)
1: Normal component of angular velocity and tangential components

of particle velocity are conserved, i.e. ψ ′′
1x = ω′′

1x , ψ ′′
2x = ω′′

2x
c′′
1y = v′′

1y , c
′′
2y = v′′

2y ,c
′′
1z = v′′

1z and c′′
2z = v′′

2z .
2: Use the x component of Eq. (63), Eq. (66), and y and z components

of Eq. (70) to set up a linear system of equations

3: Solve for x = [
c′′
1x , c′′

2x , ψ ′′
1y, ψ ′′

1z, ψ ′′
2y, ψ ′′

2z
]T
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The system of equations simplifies to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 0 0 0 0
−1 1 r ′′

1z −r ′′
1y −r ′′

2z r ′′
2y

m1r ′′
1z 0 I ′′

1yy I ′′
1yz 0 0

−m1r ′′
1y 0 I ′′

1zy I ′′
1zz 0 0

0 m2r ′′
2z 0 0 I ′′

2yy I ′′
2yz

0 −m2r ′′
2y 0 0 I ′′

2zy I ′′
2zz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c′′
1x
c′′
2x

ψ ′′
1y

ψ ′′
1z

ψ ′′
2y

ψ ′′
2z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= b ,

(73)

where b is defined as:

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1v
′′
1x + m2v

′′
2x

εn

[
v′′
1x + r ′′

1yω
′′
1z − r ′′

1zω
′′
1y − v′′

2x − r ′′
2yω

′′
2z + r ′′

2zω
′′
2y

]

I ′′
1yyω

′′
1y + I ′′

1yzω
′′
1z + m1r ′′

1zv
′′
1x

I ′′
1zyω

′′
1y + I ′′

1zzω
′′
1z − m1r ′′

1yv
′′
1x

I ′′
2yyω

′′
2y + I ′′

2yzω
′′
2z + m2r ′′

2zv
′′
2x

I ′′
2zyω

′′
2y + I ′′

2zzω
′′
2z − m2r ′′

2yv
′′
2x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(74)

4.5 Particle - wall collision

Since we consider a collision with a wall of infinite mass, the
relative contact point velocity in the normal direction before
and after collision of Eq. (65) simplifies to:

n · cP = −εn [n · vP ] . (75)

and the tangential components of the particle velocity are
conserved. We defined the collision reference frame by
pointing e′′

1 in the direction of the collision normal. The
coefficient matrix of the normal n in Eq. (75) is given by
n′′ = [1, 0, 0]T . Thus, we can simplify Eq. (75) to

c′′
x − r ′′

z ψ ′′
y + r ′′

yψ
′′
z = −εn

[
v′′
x − r ′′

z ω′′
y + r ′′

yω
′′
z

]
. (76)

Sinceweconsider frictionwith the tangential restitution coef-
ficient εt = [−1, 1], the relative contact point velocity in the
tangential directions before and after collision are connected
by:

t i · cP = εt [t i · vP ] , (77)

where i = 1, 2 and t ′′1 = [0, 1, 0]T and t ′′2 = [0, 0, 1]T .
This yields

c′′
y − r ′′

x ψ ′′
z + r ′′

z ψ ′′
x = εt

[
v′′
y − r ′′

x ω′′
z + r ′′

z ω′′
x

]
(78)

and

c′′
z − r ′′

yψ
′′
x + r ′′

x ψ ′′
y = εt

[
v′′
z − r ′′

yω
′′
x + r ′′

x ω′′
y

]
. (79)

The conservation of angular momentum can be expressed for
the particle as

I · ω + r × mv = I · ψ + r × mc . (80)

Algorithm 3 Particle–wall collision
1: Using Eq. (76,78,79) and Eq. (80) to set up a linear system of equa-

tions
2: Solve for x = [

c′′
x , c′′

y , c′′
z , ψ ′′

x , ψ ′′
y , ψ ′′

z
]T

Thus we obtain:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −r ′′
z r ′′

y
0 1 0 r ′′

z 0 −r ′′
x

0 0 1 −r ′′
y r ′′

x 0
0 −mrz mry I ′′

xx I ′′
xy I ′′

xz
mrz 0 −mrx I ′′

yx I ′′
yy I ′′

yz
−mry mrx 0 I ′′

zx I ′′
zy I ′′

zz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c′′
x
c′′
y
c′′
z

ψ ′′
x

ψ ′′
y

ψ ′′
z

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−εn

[
v′
x − r ′′

z ω′′′
y + r ′′

yω
′′
z

]

εt

[
v′
y − r ′′

x ω′′′
z + r ′′

z ω′′
x

]

εt

[
v′
z − r ′′

yω
′′′
x + r ′′

x ω′′
y

]

I ′′
xxω

′′
x + I ′′

xyω
′′
y + I ′′

xzω
′′
z + mr ′′

y v
′′
z − mr ′′

z v′′
y

I ′′
yxω

′′
x + I ′′

yyω
′′
y + I ′′

yzω
′′
z + mr ′′

z v′′
x − mr ′′

x v′′
z

I ′′
zxω

′′
x + I ′′

zyω
′′
y + I ′′

zzω
′′
z + mr ′′

x v′′
y − mr ′′

y v
′′
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(81)

4.6 Particle - wall collision (frictionless)

If we assume frictionless collision, the impulse acts solely
in the normal direction and the tangential components of the
particle velocity are conserved,

v′′
y = c′′

y, v′′
z = c′′

z (82)

as well as the angular velocity n · ω = n · ψ :

ω′′
x = ψ ′′

x . (83)

Considering only y and z components of Eq. (80) and taking
into account v′′

y = c′′
y , v

′′
z = c′′

z and ω′′
x = ψ ′′

x we obtain

I ′′
yyω

′′
y + I ′′

yzω
′′
z + mr ′′

z v′′
x = I ′′

yyψ
′′
y + I ′′

yzψ
′′
z + mr ′′

z c
′′
x ,(84)

I ′′
zyω

′′
y + I ′′

zzω
′′
z − mr ′′

y v
′′
x = I ′′

zyψ
′′
y + I ′′

zzψ
′′
z − mr ′′

y c
′′
x . (85)

The following algorithm summarizes how to solve for the
unknown final particle velocity c and angular velocity ψ for
frictionless particle–wall collision We obtain the following
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Algorithm 4 Particle–wall collision (frictionless)
1: Normal component of angular velocity and tangential components

of particle velocity are conserved, i.e. ψ ′′
x = ω′′

x , c
′′
y = v′′

y , c
′′
z = v′′

z .
2: Use Eq. (76), and y and z components of Eq. (80) to set up a linear

system of equations

3: Solve for x = [
c′′
x , ψ ′′

y , ψ ′′
z

]T

Table 1 Shape parameters of demonstrative particles, deq = 1mm

Sphere Prolate Diamond Cube

λ1 1 3 3 3

λ2 1 1 1 1

ε1 1 1 1.4 0.6

ε2 1 1 1.4 0.6

system of equation:

⎡
⎣

1 −r ′′
z r ′′

y
mr ′′

z I ′′
yy I ′′

yz
−mr ′′

y I ′′
zy I ′′

zz

⎤
⎦

⎡
⎣

c′′
x

ψ ′′
y

ψ ′′
z

⎤
⎦ =

⎡
⎢⎣

−εn

[
v′′
x + r ′′

yω
′′
z − r ′′

z ω′′
y

]

I ′′
yyω

′′
y + I ′′

yzω
′′
z + mr ′′

z v′′
x

I ′′
zyω

′′
y + I ′′

zzω
′′
z − mr ′′

y v
′′
x

⎤
⎥⎦ .

(86)

5 Demonstration Examples

In the following, we validate the presented approach using
various superellipsoidal shapes in demonstrative collision
examples, i.e. head-on-collision, eccentric collisions for both
particle–wall and particle–particle collisions. Moreover, we
demonstrate the ability of the novel approach in the case of
dense particle packing as in cylinder filling. In this context,
we investigate the influence of the time step on the resulting
particle trajectories. Note that our implementation in Open-
Foam includes the possibility of subcycling, where a time
step can be split into multiple collision substeps, which is
important for particle collisions in flows where the particle
Courant number has to be smaller than the fluid Courant
number. This means that one time step of the fluid flow time
step can be divided into several collision time steps.

5.1 Wall collision

First, we perform particle–wall collisions of four different
superellipsoidal shapes, ranging from diamond-like particles
to cuboids, see Table 1.

We use two different initial orientations of the particles
under consideration to simulate both centric particle–wall
collisions (head-on collision) and eccentric particle–wall col-
lisions. The initial orientations are ϕ = 0 ◦, θ = 0 ◦,ψ = 0 ◦

(a) Centric wall collision (b) Eccentric wall collision

Fig. 10 Sketch of centric and eccentric particle–wall collision
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Fig. 11 Translation of a sphere, prolate, cube and diamond during a
centric article-wall collision. �t/tRef : 1, 0.5, 1∗, 0.1,

0.01, 0.001, 0.0001. (∗ = 10 subcycles)

for centric collisions and ϕ = 45 ◦, θ = 0 ◦, ψ = 0 ◦ for
eccentric collisions. The initial elevation of the particle is set
to p0,y = 5 deq. The time it takes the particle to move deq
is denoted by tRef = deq/|u0,y |, where u0,y denotes the ini-
tial velocities of the particles in the wall normal direction.
Figure10 illustrates the centric and eccentric wall collision
using the example of a diamond-shaped particle.

5.1.1 Centric collision

First, we evaluate the time evolution of the considered parti-
cles before and after the centric wall collision, while varying
the time step of the simulation. As can be seen in Fig. 11a–
d, convergence with decreasing time step is observed for
all particle shapes studied. For all particles considered, no
change in the trajectory is observed at a time resolution of
t/tRef ≤ 0.05.However, even a time step that allows amotion
of 10%deq (i.e. t/tRef = 0.1) leads to small deviations of the
translational motion. Moreover, the use of t/tRef ≤ 1 (100%
deq translation per time step) with 10 subcycles leads to sim-
ilar accuracy as t/tRef = 0.1.
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Fig. 12 Angular velocity during a particle–wall centric collision of a
sphere, prolate, cube and diamond. �t/tRef : 1, 0.5, 1∗,
0.1, 0.01, 0.001, 0.0001. (∗ = 10 subcycles)

Next, we evaluate the time evolution of the angular veloc-
ity of the particles before and after the centric particle–wall
collision with respect to different time steps. Because of the
centric collision, the angular velocities should remain zero
after the collision. As can be seen in Fig. 12a–d, we observe
convergence with decreasing time step for all particle shapes
studied. For all particles considered, no change in angular
velocity is observed at a time resolution of t/tRef ≤ 0.1. In
general,weobserve good agreementwith the analytical result
of zero angular velocity in centric particle–wall collision for
all superellipsoids investigated.

5.1.2 Eccentric collision

In a further step, we target eccentric particle–wall collisions.
In this context, we investigate the effects of the time step on
the translational and rotational motion of the four superel-
lipsoidal shapes. Figure13a–d shows the vertical position
of the superellipsoids. Similar to the centric collision, we
observe a convergence with decreasing time steps for all
studied superellipsoids. A time resolution of t/tRef ≤ 0.1
leads to a sufficiently accuratemotion for all particles consid-
ered. However, the use of t/tRef ≤ 1 (100% deq translation
per time step) leads to high deviations of the translational
motion and is therefore not appropriate. Note that the use
of t/tRef ≤ 1 with 10 subcycles results in similar accuracy
as t/tRef = 0.1 and provides a sufficient description of the
translational motion.

The time evolution of the angular velocity of the particles
before and after the eccentric particle–wall collision is shown
in Fig. 14. Due to the initial orientation ϕ = 45 ◦, θ = 0 ◦,
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Fig. 13 Particle–wall eccentric collision of a sphere, prolate, cube and
diamond. �t/tRef : 1, 0.5, 1∗, 0.1, 0.01, 0.001,

0.0001. (∗ = 10 subcycles)

ψ = 0 ◦, only the component ωz can be nonzero after the
collision for all nonspherical particles. The components ωx

and ωy are presented in Fig. 14b, d, f, h and remain zero
after the collision for all superellipsoids investigated, which
agrees with the analytical result. For large time steps such
as t/tRef ≤ 1 (100% deq, however, we observe small devia-
tions. We therefore recommend the use of t/tRef 
 1. The
ωz components for the superellipsoids considered are shown
in Fig. 14a, c, e, g. As shown in Fig. 14a, for the spherical
particles also ωz remains zero after the collision. For all con-
sidered nonspherical particles, such as the prolate (Fig. 14c),
the cube-shaped (Fig. 14e), and the diamond-shaped particle
(Fig. 14f), we obtain convergence of the angular velocitywith
decreasing time step. For both the prolate ellipsoid and the
cuboid t/tRef ≤ 0.1 (10% deq) leads to accurate results, while
for the diamond particle a smaller time step of t/tRef ≤ 0.01
(1% deq) is recommended.

5.2 Particle–Particle Collision

Next, we perform the centric and eccentric collision of two
particles (Fig. 15) of spherical, ellipsoidal, diamond, and
cuboidal shapes, seeTable 1. The initial orientation of the par-
ticles under consideration is set as follows: ϕ = 0 ◦, θ = 0 ◦,
ψ = 0 ◦ for particle A and ϕ = −90 ◦, θ = 0 ◦, ψ = 0 ◦
for particle B in centric collision. For eccentric collision, the
initial orientation of particle A is set to ϕ = 45 ◦, θ = 0 ◦,
ψ = 0 ◦. The initial positions are set to p0,A = [0.5, 1, 1]T
for particle A and p0,B = [0.503, 1, 1]T for particle B. The
initial velocities of the particles are u0,A = [1, 0, 0]m/s
and u0,B = [0, 0, 0]m/s. The time required for particle A
to move deq is denoted by tRef = deq/|u0,A|.
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Fig. 14 Particle–wall eccentric collision of a sphere, prolate, cube and

diamond: Angular velocity components wz and
√

ω2
x + ω2

y . �t/tRef :

1, 0.5, 1∗, 0.1, 0.01, 0.001, 0.0001. (∗ = 10
subcycles)

(a) Centric wall collision (b) Eccentric wall collision

Fig. 15 Sketch of centric and eccentric particle–particle collision. Note
that req = 0.5deq

5.2.1 Centric Collision

First, we evaluate the time evolution of the four superellip-
soid particles before and after the centric particle–particle
collision, while varying the time step of the simulation. As
displayed in Fig. 16a–h, convergence with decreasing time
step is observed for all superellipsoids studied. Moreover, at
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Fig. 16 Particle–particle head on collision. Analytical collision
time tcol/tRef . �t/tRef : 1, 0.5, 1∗, 0.1, 0.01,
0.001, 0.0001. (∗ = 10 subcycles)

a time resolution of t/tRef ≤ 0.05 no change in trajectory
is observed and the analytical collision point can be accu-
rately reproduced. However, even the time step size related
to 10% deq (i.e. t/tRef = 0.1) leads to negligible deviations
in the trajectories.Moreover, the use of t/tRef ≤ 1 (100% deq
translation per time step) with 10 subcycles results in similar
accuracy as t/tRef = 0.1. In all cases, a time step related
to 100% deq translation (i.e. t/tRef = 1.0) is insufficient to
resolve the collision. In the case of a centric particle–particle
collision, all angular velocities should remain zero as a con-
sequence of the correct identification of the collision points.
The angular velocity of the superellipsoid investigated before
and after the collision is shown in Fig. 17a–h. For spheres and
prolates, the angular velocities remain zero after the collision,
as displayed in Fig. 17a–d. For cubes and diamond particles
(Fig. 17e-h),we observe small nonzero angular velocities due
to minor numerical shifts of the collision points from the
actual collision plane. However, this deviation can still be
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Fig. 17 Particle–particle head on collision: Angular velocity |ω|.
�t/tRef : 1, 0.5, 1∗, 0.1, 0.01, 0.001,
0.0001. (∗ = 10 subcycles)

considered negligible and can be further reduced by increas-
ing the convergence criteria of the optimization problem.

5.2.2 Eccentric Collision

In the following, we investigate the effect of time step
on the translational and rotational motion of superellip-
soidal particles during an eccentric particle–particle collision
Fig. 18a–h shows the trajectory of the four superellipsoids
before and after the eccentric collision. Similar to the head-
on particle–particle collision, we observe a convergence of
the translational motion with decreasing time steps for all
studied shapes. Again, a time resolution of t/tRef ≤ 0.05
leads to a sufficiently accurate motion for all particles con-
sidered. The use of t/tRef ≤ 1 (100% deq translation per time
step), however, leads to high deviations in the translational
motion. Subcycling can improve these results, e.g. t/tRef = 1
with 10 subcycles, where we can obtain an accuracy simi-
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Fig. 18 Particle–particle eccentric collision of a sphere, prolate, cube
and diamond. �t/tRef : 1, 0.5, 1∗, 0.1, 0.01,
0.001, 0.0001. (∗ = 10 subcycles). Included position figures from
time steps: �t/tRef = 1, 2, 3, 4

lar to t/tRef = 0.1 and thus a sufficient description of the
particle translation.

Next, we examine the angular velocity of the particles
before and after the eccentric particle–particle collision, see
Fig. 19. Due to the initial orientation ϕ = 45 ◦, θ = 0 ◦,
ψ = 0 ◦, only the component ωz can result after the col-
lision for all nonspherical particles. As shown in Fig. 19a,
ωz also remains zero after the collision for the spheres. For
all nonspherical particles such as the prolate ellipsoid, see
Fig. 19c, d, the cuboid, see Fig. 19e, f, and the diamond-
shaped superellipsoid, see Fig. 19g, h, however, we obtain
a nonzero ωz . For all particles, we observe a convergence of
the angular velocity with decreasing time step, where a time
resolution of t/tRef = 0.1 proved to be sufficient.
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Fig. 19 Particle–particle eccentric collision of a sphere, prolate, cube
and diamond. �t/tRef : 1, 0.5, 1∗, 0.1, 0.01,
0.001, 0.0001. (∗ = 10 subcycles)

5.3 Cylinder Filling

To illustrate the ability of our model to also handle dense
particle systems and thus multiple collisions, we perform
simulations involving contacts between multiple particles,
such as packing simulations (i.e. cylinder packing). The setup
of the cylinder filling simulation is shown in Fig. 20. The
length of the cylinder is set to L = 0.4m and the diameter to
D = 0.057m.Herewe inject various superellipsoids to com-
pare the final packing. The particles studied are described in
Table 2. The superellipsoids have a volume equivalent diam-
eter of deq = 0.01m and a density of ρp = 1000 kg/m3.
The restitution coefficient for the particle–wall as well as
the particle–particle interaction is set to εn = 0.2 and we
assume εt = 1.0. Note that the value of εn = 0.2 is cho-
sen to allow collision of multiple particles while reducing
the time required for the particles to come to rest. We inject
100 particles with initial zero angular velocity and random

Fig. 20 Sketch of cylinder domain with particles settling due to gravity

initial orientation into a cylindrical volume with height L
and diameter D to ensure that the particles do not overlap
at initialization. The particles settle in the cylinder due to
gravity, as shown in Fig. 20. Figure21 shows the resulting
filling height, while Fig. 22 presents the particle distribution
at the bottom wall of the cylinder. We employ a time step of
�t = 1e−05, which has been shown to handle particle colli-
sions with negligible overlap, as presented in Figs. 21 and 22.
Thus, this study highlights the ability of the presented colli-
sionmethod to handlemultiple collisions of particles-particle
and particles with walls of various superellipsoidal shapes.
Note that the identified overlap of particles is removed after
each collision by a corresponding displacement of the parti-
cles according to the identified contact point and to surface
normal.

5.4 Emptying of a cylinder

In our final studywe employ friction by using εt �= 1 to study
the emptying of a cylindrical domain filledwith 300 particles.
Thus, we need to find a description for the relation between
the tangential restitution coefficient εt and the friction coef-
ficient μ. In the case of spherical particles, Schwager et al.
[53] used the following relation between εt and the friction
coefficient μ for spheres in the limit of Coulomb friction:

εt = max

(
0, 1 − μ[1 + εn]α−1 gn

gt

)
, (87)

using gn the relative normal velocity and gt the relative tan-
gential velocity between the colliding partners in the contact
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Table 2 Demonstrative particles for cylinder filling: deq = 0.01m, ρp = 1000 kg/m3, εn = 0.2 (particle–wall, particle–particle), εt = 1.0
(frictionless particle–wall and particle–particle collision)

Spheroid Diamond Cube

A B C A B C A B C

λ1 1 2 2 1 2 2 1 2 2

λ2 1 1 2 1 1 2 1 1 2

ε1 1 1 1 1.4 1.4 1.4 0.6 0.6 0.6

ε2 1 1 1 1.4 1.4 1.4 0.6 0.6 0.6

Fig. 21 Front view of cylinder filled with various superellipsoidal
shapes using timestep �t = 1e−05 s

Fig. 22 Bottom view of cylinder filled with various superellipsoidal
shapes using timestep �t = 1e−05 s

point before collision as well as α, which is obtained as fol-
lows:

α =
[
1 + m1m2

m1 + m2

[
r21
I1

+ r22
I2

]]−1

(88)

and simplifies to α = 2/7 for homogeneous spheres. For
simplicity, we chose the relation presented in Eq. (87) to
prove the concept of treating friction in our model. Note
that the above description for εt using the presented α is
valid only for spheres. The spherical particles studied have
a (volume equivalent) diameter of deq = 0.011m and a den-
sity of ρp = 1000 kg/m3. The restitution coefficient for the
particle–wall as well as the particle–particle interaction is set
to εn = 0.2. The friction coefficient for the particle–particle
and particle–wall contact is set toμ = 0.25. Particles are ran-
domly injected into a cylindrical volume with height L and
diameter D (see Sec 5.3) to ensure that particles do not over-
lap at initialization and are allowed to settle due to gravity,
as shown in Fig. 23a. To mimic the removal of the cylinder
walls, the particles are simply injected into a cubical domain
with their final position after the preparatory filling process is
completed. The cubical domain is assumed to be filled with
water (ρ f = 998.21 kg/m3 and ν = 1.0047e−06m2/s).

Figure23 visualizes the horizontal and vertical spread of
a collapsing particle stack for frictionless (a-e) and frictional
(f-j) spheres. Figure23 contains the current bounding box of
the sphere stack for the frictionless case as a reference for
all time steps presented. As shown in Fig. 23, we observe a
clear difference between the frictionless and frictional case
for all time steps shown. At t = 1.0 s and t = 2.5 s, we
observe different angles of the collapsing sphere stack with
the plane surface, see Fig. 23b, g and c, h. Moreover, at t =
5.0 s we identify a higher stacking of the frictional spheres,
while the frictionless spheres spread further, see Fig. 23d, i.
This trend continues up to t = 10.0 s, see Fig. 23e, j, where
the difference in horizontal spread between frictionless and
frictional spheres is even more pronounced.
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Fig. 23 Front view of cylinder emptying simulation using timestep �t = 1e−05 s

6 Conclusions

In this article, we proposed a new method for efficient com-
putation of three-dimensional frictional collisions between
particles and between particles and walls using a superellip-
soidal particle shape definition. In this context, we presented
an efficient and robust Newton–Raphson-based Lagrangian
multiplier optimization technique for accurate collision point
detection, applicable to any particle using the superellip-
soidal shape description. The advantage of superellipsoidal
particles is that a wide range of complex, nonspherical
particle shapes can be generated using only four shape
parameters, saving significant computer memory compared
to surface discretization techniques. The new superellipsoid-
based approach to particle collisionsmainly targets collisions
that occur in dilute particle flows, such as particle clusters that
form in turbulent flow structures. However, we have shown
that the model can also capture multiple particle contacts,
such as those that occur in dense particle systems, e.g. filling
processes. In this work, we performed a time-step study as
well as a validation of the collisionmodel for superellipsoidal
particles. In this context, for particle shapes ranging from
cubes to diamonds, we identified a time resolution related
to 10% deq translation as sufficient to accurately resolve the
collision and thus the resulting translational and rotational
motion. Finally, a simplified relation between the tangen-
tial restitution εt and the friction coefficient μ for a spherical
particle systemwas used to model frictional particle–particle
and particle–wall collisions. In our future work, we aim to
generalize the definition of εt and explore different friction
models in the context of superellipsoidal particle collisions.

The derived superellipsoidal particle contact models can be
directly applied in CFD with Lagrangian particle tracking
algorithms, but could also be implemented in the framework
of DEM-based modeling approaches.
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Appendices

A Derivatives of the surface gradient
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where the prefactors are defined as

w0 = f1[ f1 − 2][ f1 − 1], w1 = f1 f2 f2[ f0 − 2][ f0 − 1],
w2 = f1[ f1 − f2], w3 =

[
x ′

a

] f2

+
[
y′

b

] f2

(92)

and f0, f1 and f2 are given by

f0 = ε2/ε1 , f1 = 2/ε1 , f2 = 2/ε2 . (93)

The first and second order partial derivatives of ||∇S||−1 in
the global frame are written as
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B Superellipsoid-Wall collision Part 1

The general formula of partial derivative of the Lagrangian
with respect to x, y, z renders:
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where mi j are the components of the rotation matrix for the
superellipsoid and x ′, y′, z′ are obtained using Eq. (27). The
derivative of the Lagrangian with respect to the Lagrange
multiplier is

∂L

∂λ
= W (r; a, b, c) = n · [r − a]

= [c− a] × [b − a]
| [c− a] × [b − a] | · [r − a] = 0, (97)

C Superellipsoid-Superellipsoid collision Part 1

The nonlinear systemof four equations for the unknown loca-
tion rd = [x, y, z]T and λ reads
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wherem(1)
i j andm(2)

i j are the components of the rotationmatrix
R of S1 and S2 respectively. The derivative of the Lagrangian
with respect to the Lagrange multiplier is
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