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a b s t r a c t 

In this paper, we couple a numerical method aimed at simulation of flow and heat transfer of nanofluids with 
stochastic modelling of input and material parameters. In order to simulate nanofluids, an in-house numerical 
method was developed, based on the solution of 3D velocity–vorticity formulation of Navier–Stokes equations. 
A fast Boundary-Domain Integral Method has been employed to solve the governing equations and set up the 
deterministic flow and heat transfer solver. The developed algorithm is used to simulate natural convection of a 
nanofluid in a closed cavity. The uncertainty present in the input parameters is propagated to the output of interest 
via the Stochastic Collocation Method. The stochastic mean, variance, and higher-order moments of the output 
values are presented. The non-intrusive nature of the Stochastic Collocation Method facilitates the previously 
validated deterministic code to remain unchanged. The stochastic analysis reveals that the uncertainty of input 
parameters influences the output results most in the areas where high flow field gradients appear. 
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. Introduction 

Modelling and simulation [1] of natural phenomena and technical
evices has become a standard tool for researchers and engineers in their
uest to understand the phenomena and processes and optimise their so-
utions and designs. The first step in the modelling process is the identifi-
ation of processes, variables and parameters. A mathematical-physical
odel of the processes is set up, which connects the processes with vari-

bles and parameters. In many cases, the mathematical-physical model
s very well known, for example, in fluid dynamics and heat transfer, the
avier–Stokes equations [2] are known to describe the underlying pro-
esses adequately. Models are based on several parameters. These may
ome from design considerations or represent material properties. In vir-
ually all cases, the parameters are known only with a certain degree of
ccuracy. Furthermore, the parameters may be temperature or pressure
ependent, which, when not taken into account, is another source of
ncertainty. 

The usual practice in the numerical simulation of nanofluids is to
se average values of input parameters, thus leading to merely a rough
epresentation of reality. However, the uncertainty present in input
arameters can be quantified by using the statistical/stochastic tools
3–5] and propagated to the output value of interest via a suitable un-
ertainty propagation method. Sensitivity and uncertainty analysis has
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een successfully employed to study key input parameters influencing
 wide variety of systems [6] . Vu-Bac et al. [7] have developed a soft-
are framework for probabilistic sensitivity analysis for computation-
lly expensive models to avoid the high computational demand of the
raditional Monte Carlo method [8] . Xiu and Karniadakis [9] and Thapa
t al. [10] proposed modelling uncertainty in flow simulations via gen-
ralised polynomial chaos. They showed that the generalised polyno-
ial chaos method promises a substantial increase to the convergence

ate compared with the Monte Carlo method. Mathelin et al. [11] com-
ared two stochastic approaches to uncertainty quantification in flow
imulations: polynomial chaos and stochastic collocation, showing the
dvantage of the stochastic collocation. In this work, the Stochastic Col-
ocation Method (SCM) is used [12] . 

Successful applications of the SCM have been reported in different
reas, e.g. stochastic analysis of convective heat transfer [13] and uncer-
ainty quantification in computational fluid dynamics [14] , electrostatic
icromechanical systems [15] , numerical simulation of a reverberation

hamber [16] , uncertainty quantification of specific absorption rate in
umerical dosimetry [17] , etc. The SCM has many variants, depending
n the problem to be solved and the number of the input parameters
o be modelled as random variables/processes [12] . The main advan-
age of the SCM is its nonintrusive nature which allows the use of un-
hanged deterministic codes that were validated previously. However,
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nlike traditional Monte Carlo methods, the choice of sampling points is
ot random. Instead, the points are selected according to the quadrature
r cubature rules, chosen carefully in order to compute the integrals of
tochastic moments as accurately as possible [12] . The SCM framework
s used in this work with the aim to compute the stochastic mean and
ariance of the output values. Additionally, a sensitivity analysis based
n a one-at-a-time approach is carried out to identify the relative impact
f different input parameters. 

In order to apply the stochastic modelling of input parameters, we
ropose to use the fast Boundary-Domain Integral Method (BDIM) to
erform deterministic simulations. The BDIM was proposed by Š kerget
t al. [18] for the solution of the Navier–Stokes equations in velocity–
orticity form. As the governing equations are unsteady, non-linear and
nhomogeneous, a straightforward boundary only integral representa-
ion is not possible. In its original form, BDIM uses a domain mesh to
valuate domain integrals in the boundary-domain integral representa-
ion. Use of different Green’s functions is possible, such as the funda-
ental solution of the diffusion operator, or the convection–diffusion

perator. Since all are non-local, the resulting domain integral matrix
s fully populated and unsymmetrical. The CPU time and memory stor-
ge requirements of the BDIM scale as  ( 𝑛 2 ) , where n is the number of
ll nodes in the boundary and domain meshes. This scaling limits the
pplicability of the method severely, as it can only be applied to small
roblems due to its huge computational demands. 

Several attempts have already been made in order to mitigate the
ain drawback of BDIM and reduce the scaling of computational de-
ands to a more manageable  ( 𝑛 log 𝑛 ) . Either boundary or domain ma-

rices coming from the discretisation of the integral equations can be ap-
roximated using a wide variety of approaches, known by a joint name:
ast methods. The Fast Multipole Method (FMM) [19,20] , the Adaptive
ross Approximation (ACA) [21–25] and wavelet transform [26–28] are
mong the more popular approaches. Domain integrals may be avoided
y transforming them into boundary integrals either by means of ap-
roximation within the domain (dual reciprocity method, [29,30] ), or
y using the radial integration method, [31,32] . Another popular ap-
roach is based on domain decomposition [33–35] . 

The solution of Navier–Stokes equations proposed in this paper uses
DIM accelerated by a combination of two fast approaches: the ACA and
omain decomposition. ACA is used to approximate integral matrices
temming from the kinematics equations and domain decomposition is
sed for the vorticity and energy transport equations. 

The deterministic fast BDIM algorithm was coupled with a stochas-
ic method in this paper to assess the influence of input parameters in
he case of flow and heat transfer of nanofluids [36] . A nanofluid is a
table suspension of a base fluid and nanometre-sized particles. Usu-
lly, the base fluid has poor thermal characteristics (e.g. water, gly-
ol). Thus, the introduction of particles with good thermal properties
such as metal oxides) improves the thermal properties of the suspen-
ion significantly. Since particles are nanometre-sized, the suspensions
emain stable for a long period of time due to Brownian motion and
atural convection. Such suspensions are named nanofluids. In recent
ears, research into nanofluids has intensified in the fields of Mate-
ial Characterisation [37,38] , Engineering Application [39] and Sim-
lation [40–42] . In this work, we employ the homogeneous effective
roperties nanofluid model [40] and use the appropriate Navier–Stokes
quations in velocity–vorticity formulation. We are interested in the
nput parameter influence on the results for a specific flow and heat
ransfer case. However, stochastic methods can also be used to esti-
ate effective parameters of nanofluids, as proposed by Kaminski and
ssowski [43] . 

The paper is organised as follows: first, the governing equa-
ions are presented, followed by the description of the fast BDIM
ethod. The stochastic modelling approach is presented in Section 4 .

ection 5 presents the nanofluid problem under consideration, and is
ollowed by the Results section. The summary of the paper is given in
he last section. 
c  
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. Governing equations 

We suppose that the nanofluid is a dilute suspension of uniformly
ispersed nanometre-sized particles in the base fluid. The nanofluid be-
aves as an incompressible Newtonian fluid, and we assume that the
anoparticles and the fluid are in thermal equilibrium. Furthermore,
e assume the no-slip boundary condition between the particles and

he fluid. Within these approximations, the nanofluid can be modelled
s a new fluid with newly defined effective properties. These proper-
ies are: thermal conductivity k nf , density 𝜌nf , viscosity 𝜈nf , heat capaci-
ance c nf and thermal expansion coefficient 𝛽nf . From here on, we denote
anofluid properties with the subscript nf , the solid particle properties
ith s , and pure base fluid properties with the subscript f . The effective
anofluid properties are all assumed constant throughout the flow do-
ain, although, they do depend on the nanoparticle concentration. The

ssumption of constant properties is justifiable, due to the fact that ther-
al properties of base fluid (water) do not depend strongly on temper-

ture, and, at the same time, the Stokes number of nanoparticles is very
mall, and the influence of Brownian motion on nanoparticles is sub-
tantial, thus, the assumption of uniform distribution of nanoparticles,
hich leads to constant nanofluid properties, is justified. Finally, we as-

ume the flow to be laminar and steady, since we are interested in steady
tate improvement of heat transfer due to the presence of nanoparticles.

The flow of nanofluid is governed by the Navier–Stokes equations
oupled with the energy transfer equation. They should be solved for
he unknown velocity, pressure and temperature fields. In this paper, we
mploy the velocity–vorticity formulation of Navier–Stokes equations,
here the pressure is replaced by vorticity in the governing equations.
orticity is defined at the curl of the velocity field. We propose to solve

he problem in a non-dimensional manner by introducing the follow-
ng characteristic parameters: temperature T 0 , temperature difference
T , length scale L and 𝑔 0 = 9 . 81 m/s 2 . We will study the development
f natural convection, thus, a natural choice for characteristic velocity,
hich would be defined from the flow rate, does not exist. We chose

he characteristic velocity to be 𝑣 0 = 𝑘 𝑓 ∕( 𝜌𝑐) 𝑓 𝐿 . This choice leads to
he following definition of the Reynolds number 𝑅𝑒 = 1∕ 𝑃 𝑟, where Pr
s the pure fluid Prandtl number, 𝑃 𝑟 = 𝜈𝑓 ( 𝜌𝑐) 𝑓 ∕ 𝑘 𝑓 . The nondimensional
ow field vectors are defined as follows, the velocity field 𝑣 = 𝑣 ⋆ ∕ 𝑣 0 ,
he position vector 𝑟 = ⃗𝑟 ⋆ ∕ 𝐿, the vorticity field 𝜔⃗ = 𝐿 ⃗𝜔 ⋆ ∕ 𝑣 0 , tempera-
ure field 𝜃 = ( 𝑇 ⋆ − 𝑇 0 )∕Δ𝑇 and 𝑔 = 𝑔 ⋆ ∕ 𝑔 0 . Starred parameters denote
imensional values. Within this nondimensional setting, one can derive
he nondimensional steady velocity–vorticity formulation of Navier–
tokes equations. A system of three second order partial differential
quations is obtained, namely, the kinematics equation, the vorticity
ransport equation and the energy equation [44] : 

 

2 𝑣 + ∇⃗ × 𝜔⃗ = 0 , (1)

 ⃗𝑣 ⋅ ∇⃗ ) ⃗𝜔 = ( ⃗𝜔 ⋅ ∇⃗ ) ⃗𝑣 + 𝑃 𝑟 
𝜈𝑛𝑓 

𝜈𝑓 

𝜌𝑓 

𝜌𝑛𝑓 
∇ 

2 𝜔⃗ − 𝑃 𝑟𝑅𝑎 
𝛽𝑛𝑓 

𝛽𝑓 
∇⃗ × 𝜃𝑔 , (2)

 ⃗𝑣 ⋅ ∇⃗ ) 𝜃 = 

𝑘 𝑛𝑓 

𝑘 𝑓 

( 𝜌𝑐) 𝑓 
( 𝜌𝑐) 𝑛𝑓 

∇ 

2 𝜃. (3)

part from the ratios between the pure fluid and nanofluid properties,
he problem is described uniquely by specifying Rayleigh and Prandtl
umber values for the pure fluid. The Rayleigh number is defined as
𝑎 = 𝑔 0 𝛽𝑓 Δ𝑇 𝐿 

3 𝜌𝑓 ( 𝜌𝑐 𝑝 ) 𝑓 ∕( 𝜈𝑓 𝑘 𝑓 ) . Furthermore, either Dirichlet or Neu-
ann velocity, vorticity and temperature boundary conditions must be

nown. We assume that the velocity and temperature boundary condi-
ions are known, while we calculate the vorticity boundary conditions,
hich are need for the solution of Eq. (2) , within the nonlinear itera-

ion loop. Pressure is not a part of the velocity–vorticity formulation of
avier–Stokes equations. It can be calculated in a post-processing step

rom the known velocity and vorticity fields. 
The nanofluid density, heat capacity and thermal expansion coeffi-

ient are defined using the mixing rule [45] based on the nanoparticle
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(  

s  

m  

u  

b  
olume fraction 𝜑 as: 𝜌𝑛𝑓 = (1 − 𝜑 ) 𝜌𝑓 + 𝜑𝜌𝑠 , ( 𝜌𝑐) 𝑛𝑓 = (1 − 𝜑 )( 𝜌𝑐) 𝑓 +
 ( 𝜌𝑐) 𝑠 and ( 𝜌𝛽) 𝑛𝑓 = (1 − 𝜑 )( 𝜌𝛽) 𝑓 + 𝜑 ( 𝜌𝛽) 𝑠 . 

A model for effective viscosity of a dilute suspension of small rigid
pherical particles in water was developed by Brinkman [46] : 𝜈𝑛𝑓 =
𝑓 ∕(1 − 𝜑 ) 2 . 5 . The Maxwell-Garnett formula [47,48] is available for es-
imation of the effective thermal conductivity of a nanofluid 

 𝑛𝑓 = 𝑘 𝑓 
𝑘 𝑠 + 2 𝑘 𝑓 − 2 𝜑 ( 𝑘 𝑓 − 𝑘 𝑠 ) 
𝑘 𝑠 + 2 𝑘 𝑓 + 𝜑 ( 𝑘 𝑓 − 𝑘 𝑠 ) 

. (4)

. The fast Boundary-Domain Integral Method 

Our aim is to solve a set of three nonlinear partial differential equa-
ions (1) –(3) in a deterministic way by specifying the nanofluid proper-
ies and Rayleigh and Prandtl numbers. The BDIM uses a fundamental
olution of the diffusion operator to derive integral expressions for the
et of governing equations. The integral statements are discretised on
 computational grid, and this leads to fully populated systems of lin-
ar equations. Fully populated matrices may be approximated using one
f the fast methods. In this work, we use adaptive cross approximation
nd transformations of the matrices in  matrix format. Since the set of
overning equations is nonlinear, an iteration loop is set up, which uses
nder-relaxation to reach convergence. 

Let Ω denote the fluid domain, with a position vector 𝑟 ∈ ( ℝ ) 3 , and
et Γ be its boundary and 𝜉 a point in the domain or on the bound-
ry. Starting from Green’s theorems, it is possible to derive the sin-
ular boundary-domain integral representation of the governing equa-
ions. We make use of the fundamental solution of the Laplace equation
 

⋆ ( ⃗𝜉, ⃗𝑟 ) = 1∕4 𝜋|𝜉 − ⃗𝑟 |. 
Wu and Thompson [49] and Š kerget et al. [50] derived the following

ntegral form of the kinematics equation (1) : 

( ⃗𝜉) ⃗𝑣 ( ⃗𝜉) + ∫Γ 𝑣 ( ⃗𝑛 ⋅ ∇⃗ 𝑢 ⋆ ) 𝑑Γ = ∫Γ 𝑣 × ( ⃗𝑛 × ∇⃗ 𝑢 ⋆ ) 𝑑Γ + ∫Ω( ⃗𝜔 × ∇⃗ 𝑢 ⋆ ) 𝑑Ω, (5)

avnik et al. [44] derived the integral forms of the vorticity transport
quation (2) and the energy equation (3) as follows: 

( ⃗𝜉) 𝜔 𝑗 ( ⃗𝜉) + ∫Γ 𝜔 𝑗 ⃗∇ 𝑢 ∗ ⋅ 𝑛 𝑑Γ = ∫Γ 𝑢 
∗ 𝑞 𝑗 𝑑Γ

+ 

1 
𝑃 𝑟 

𝜈𝑓 

𝜈𝑛𝑓 

𝜌𝑛𝑓 

𝜌𝑓 

( 

∫Γ 𝑛 ⋅
{
𝑢 ∗ ( ⃗𝑣 𝜔 𝑗 − 𝜔⃗ 𝑣 𝑗 ) 

}
𝑑Γ − ∫Ω( ⃗𝑣 𝜔 𝑗 − 𝜔⃗ 𝑣 𝑗 ) ⋅ ∇⃗ 𝑢 ∗ 𝑑Ω

) 

− 𝑅𝑎 
𝛽𝑛𝑓 

𝛽𝑓 

𝜈𝑓 

𝜈𝑛𝑓 

𝜌𝑛𝑓 

𝜌𝑓 ∫Γ( 𝑢 
⋆ 𝜃𝑔 × 𝑛 ) 𝑗 𝑑Γ − 𝑅𝑎 

𝛽𝑛𝑓 

𝛽𝑓 

𝜈𝑓 

𝜈𝑛𝑓 

𝜌𝑛𝑓 

𝜌𝑓 ∫Ω( 𝜃∇⃗ × 𝑢 ⋆ 𝑔 ) 𝑗 𝑑Ω, 

(6) 

( ⃗𝜉) 𝜃( ⃗𝜉) + ∫Γ 𝜃∇⃗ 𝑢 ∗ ⋅ 𝑛 𝑑Γ = ∫Γ 𝑢 
∗ 𝜃𝑞 𝑑Γ

+ 

𝑘 𝑓 

𝑘 𝑛𝑓 

( 𝜌𝑐 𝑝 ) 𝑛𝑓 
( 𝜌𝑐 𝑝 ) 𝑓 

( 

∫Γ 𝑛 ⋅
{
𝑢 ∗ ( ⃗𝑣 𝜃) 

}
𝑑Γ − ∫Ω( ⃗𝑣 𝜃) ⋅ ∇⃗ 𝑢 ∗ 𝑑Ω

) 

. (7) 

ere, 𝜃q is the temperature flux, i.e. 𝜃𝑞 = 𝑛 ⋅ ∇⃗ 𝜃 and q j is the j th compo-
ent of vorticity flux. ⃗𝑛 is a vector normal to the boundary, pointing out
f the domain. 𝑐( ⃗𝜉) is the geometric factor defined as 𝑐( ⃗𝜉) = 𝛼∕4 𝜋. When
⃗ is at the boundary, 𝛼 is the inner angle of the boundary with the origin
t 𝜉. When the boundary is straight, 𝑐 = 1∕2 , when 𝜉 is in the domain,
 = 1 . 

The boundary-domain integral representations of the governing
quations (5) –(7) all feature boundary as well as domain integrals. When
on-fast BDIM is used, we prepare a computational grid in the domain
nd at the boundary and, place the source point ⃗𝜉 in all boundary nodes.
his leads to fully populated systems of linear equations, which, due to
he presence of domain terms, scale as the number of domain nodes
quared. The fully populated system limits the applicability of BDIM
everely, since it requires large computational resources. In this paper,
e want to couple this deterministic algorithm with stochastic estima-

ion of the influence of input parameters. This requires many runs of the
187 
eterministic algorithm (around twenty thousand runs were performed
o produce the results presented in this paper). Thus, we introduced
wo fast techniques to lower the required computational resources: the

matrix structure and ACA approximation for the kinematics equa-
ion (5) , and a domain decomposition approach for the vorticity (6) and
emperature (7) equations. 

We employ hexahedrons to set up the domain mesh and their faces
or the boundary mesh. At the boundary and in the domain we employ
ontinuous quadratic interpolation for function and discontinuous linear
nterpolation for flux using shape functions 𝜑 , 𝜙 and Φ: 

 = 

9 ∑
𝑖 =1 

𝜑 𝑖 𝑢 𝑖 , 𝑞 = 

4 ∑
𝑖 =1 

𝜙𝑖 𝑞 𝑖 , 𝑢 = 

27 ∑
𝑖 =1 

Φ𝑖 𝑢 𝑖 , (8)

here u represents the field functions and q their flux. The flux interpo-
ation nodes are located inside of the boundary elements so the element
ormal is well defined in each flux node. Using these interpolations we
re able to write discrete counterparts of the governing equations. 

The complete algorithm can be summarised as follows. Firstly, we
mploy the  matrix structure and ACA accelerated solution of the kine-
atics equation (5) to determine vorticity values at the boundary. Next,
e use the domain decomposition approach to solve the velocity field
sing (5) , temperature field using (7) and, vorticity field using (6) . For
he solution of (6) we make use of boundary vorticity values obtained in
he first step of the algorithm. Since the problem is non-linear, we repeat
hese steps until convergence for all field functions is reached. Conver-
ence criteria are based on the relative difference between field func-
ions in the current and the previous iteration. It was set to 10 −5 . To miti-
ate the nonlinear nature of the problem, we employed under-relaxation
or the energy equation (10%) and the vorticity equation (1%). Both fast
pproaches are presented in the following subsections. 

.1. ACA –  matrix approach 

We use the ACA –  matrix approach to decrease the computational
emands of the solution of the kinematics equation (5) for the unknown
oundary vorticity values. We base our method on a full domain com-
utational grid, since the integral form of the equation features both
oundary and domain integrals. Nowadays, the meshing of the domain
ith modern meshing algorithms is no longer a challenge, and cannot
e regarded as a disadvantage of the method. However, full matrices,
hich are produced during the discretisation, do indeed present a prob-

em. In the case of the kinematics equations, we place source points only
nto the boundary nodes. We encounter two types of matrices: Boundary

boundary and boundary × domain. In order to use ACA to produce
ow-rank approximations of the matrices, we first transform the matri-
es into  matrix format [51] . Hierarchical decomposition of the do-
ain can be achieved using a top-down approach [25] or a bottom-up

pproach [23] . In this work, we employ the bottom-up approach. The
ecomposition is done twice, firstly for the boundary, where boundary
odes are grouped into boundary clusters, and secondly for the domain,
here domain nodes are grouped into domain clusters ( Fig. 1 ). An ad-
issibility criterion is used, based on the size of the clusters and distance

etween the clusters, to decide which cluster pair can be approximated
y ACA and which cannot. An illustration of admissible parts of a matrix
s presented in Fig. 1 . Additional information on the implementation of
he approach is given in Ravnik and Tibuat [25] and Tibaut and Ravnik
24] . 

.2. Domain decomposition approach 

The domain decomposition approach is used for equations (5),
7) and (6) to solve the velocity, temperature and vorticity fields. In-
tead of applying BDIM on the whole mesh, we apply BDIM for each
esh cell individually. As boundary conditions between mesh cells are
nknown, we introduce continuity of functions and preservation of flux
etween cells as additional constraints. This approach was proposed by
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Fig. 1. Hierarchical division of a cubic domain is shown in the left panel. Boundary and domain clusters are presented, together with the definition of the distance 
between clusters and the size of clusters. In the right panel, a corresponding boundary-domain matrix structure for an 17 3 nodes mesh is shown. Inadmissible parts 
are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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am š ak and Š kerget [52] for stream function-vorticity formulation in
D, and extended to the velocity–vorticity formulation in 3D by Ravnik
t al. [53] . Since subdomains share nodes, and since we place collocation
oints in every function and flux node we end up with more equations
han unknowns. The resulting over-determined sparse system of linear
quations is solved by a least-squares-based solver. The system is sparse
ecause subdomains are mesh cells and each equations only connects
unction and flux with neighbouring subdomains. 

. Stochastic modelling 

In order to assess the uncertainty present in material parameters and
esign parameters, we will employ the Stochastic Collocation Method
SCM) to propagate the uncertainty to simulation results, which are of
ngineering importance. 

.1. Sensitivity moments 

The fundamental principle of the SCM lies in the polynomial ap-
roximation of the considered output over the multi-dimensional input
tochastic space [12] : 

 ( 𝐗 ) = 

𝑁 ∑
𝑖 =1 

𝐿 𝑖 ( 𝐗 ) ⋅ 𝑌 ( 𝑖 ) (9)

here L i ( X ) is the basis function, Y 

( i ) is the output realisation for the i th
nput point X 

( i ) and N is the total number of deterministic simulations.
he random input variables are organised in a vector 𝐗 

( 𝑖 ) = [ 𝑥 ( 𝑖 ) 1 , … 𝑥 
( 𝑖 ) 
𝑑 
]

here d is the total number of input random variables (RV). The basis
unctions may be of Lagrange type [14] , wavelet basis [54] or piecewise
onstant [15] while the choice of the collocation points may follow dif-
erent quadrature [14] and cubature rules [55] . 

Throughout this work a Lagrange type of basis functions is adopted.
ence, for the univariate case, i.e. 𝑑 = 1 and 𝐗 

( 𝑖 ) = [ 𝑥 ( 𝑖 ) 1 ] and a total of
 k collocation points in the k th dimension the Lagrange basis function

s given as: 

 𝑖 ( 𝑥 𝑘 ) = 𝑙 𝑖 ( 𝑥 𝑘 ) = 

𝑘 ∏
𝑗 =0 ,𝑗 ≠𝑖 

𝑥 𝑘 − 𝑥 
( 𝑗) 
𝑘 

𝑥 
( 𝑖 ) 
𝑘 

− 𝑥 
( 𝑗) 
𝑘 

, 𝑖 = 1 , … , 𝑚 𝑘 (10)

ith the property 𝑙 𝑖 ( 𝑥 𝑗 ) = 𝛿𝑖𝑗 , where 𝛿ij denotes the Kronecker sym-
ol. In order to answer the question about collocation points’ selection,
t is useful firstly to recall the definitions of stochastic moments. The
188 
tochastic mean 𝜇, standard deviation 𝜎, and variance 𝜎2 are defined as
ollows: 

( 𝑌 ( 𝐗 )) = ∫Γ 𝑌 ( 𝐗 ) 𝑝 ( 𝐗 ) 𝑑𝐗 , (11)

2 ( 𝑌 ( 𝐗 )) = ∫Γ ( 𝑌 ( 𝐗 ) − 𝜇( 𝑌 ( 𝐗 )) ) 2 𝑝 ( 𝐗 ) 𝑑𝐗 = ∫Γ ( 𝑌 ( 𝐗 ) ) 2 𝑝 ( 𝐗 ) 𝑑𝐗 − ( 𝜇( 𝑌 ( 𝐗 )) ) 2 , 

(12) 

here p ( X ) is the joint probability density function: 

 ( 𝐗 ) = 

𝑑 ∏
𝑘 =1 

𝑝 ( 𝑥 𝑘 ) (13)

nd Γ is the support space of random input variables. Using the polyno-
ial expansion (9) we can approximate the expression for mean (11) and

ariance (12) as 

( 𝑌 ( 𝐗 )) ≈
𝑁 ∑
𝑖 =1 

𝑌 ( 𝑖 ) ∫Γ 𝐿 𝑖 ( 𝐗 ) 𝑝 ( 𝐗 ) 𝑑𝐗 (14)

nd 

2 ( 𝑌 ( 𝐗 )) ≈
𝑁 ∑
𝑖 =1 

(
𝑌 ( 𝑖 ) 

)2 
∫Γ 𝐿 𝑖 ( 𝐗 ) 𝑝 ( 𝐗 ) 𝑑𝐗 − ( 𝜇( 𝑌 ( 𝐗 )) ) 2 (15)

ince the basis functions L i ( X ) and the joint pdf p ( X ) are known, the
ntegral over the space Γ can be precomputed and its value is called the
eight w i : 

 𝑖 = ∫Γ 𝐿 𝑖 ( 𝐗 ) 𝑝 ( 𝐗 ) 𝑑𝐗 . (16)

onsequently, the stochastic moments mean, variance, skewness and
urtosis can be expressed in a very simple form, [12] , as 

≈
𝑁 ∑
𝑖 =1 

𝑌 ( 𝑖 ) 𝑤 𝑖 , 𝜎2 ≈
𝑁 ∑
𝑖 =1 

(
𝑌 ( 𝑖 ) 

)2 
𝑤 𝑖 − 𝜇2 , (17)

𝑘𝑒𝑤 ≈ 1 
𝜎3 

( 

𝑁 ∑
𝑖 =1 

(
𝑌 ( 𝑖 ) 

)3 
𝑤 𝑖 − 3 𝜇𝜎2 − 𝜇3 

) 

, (18)

𝑢𝑟𝑡 ≈ 1 
𝜎4 

( 

𝑁 ∑
𝑖 =1 

(
𝑌 ( 𝑖 ) 

)4 
𝑤 𝑖 − 4 𝜇𝜎3 ⋅ 𝑠𝑘𝑒𝑤 − 6 𝜇2 𝜎2 − 𝜇4 

) 

. (19)

ue to interpolative nature of the SCM, the accuracy of mean and vari-
nce is expected to be higher than the accuracy of higher-order mo-
ents. 
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Table 1 

Thermophysical properties of pure fluids and solid 
nanoparticles [57] . Water viscosity is 𝜈 = 0 . 912 mm 

2 ∕ s . 

c p 𝜌 k 𝛽

[ J/kg K ] [ kg/m 

3 ] [ W/mK ] [ ⋅10 −5 K −1 ] 

Water 4179 997.1 0.613 21 

Al 2 O 3 765 3970 40 0.85 

Fig. 2. Boundary conditions for the natural convection in a cubic cavity test 
case. All six sides of the cavity have a no-slip boundary condition applied. Dirich- 
let constant temperature boundary conditions are prescribed on the hot and cold 
walls. Neumann zero heat flux boundary condition is applied on the other four 
walls. Primary vortex and its orientation are also shown. Temperature contours 
are shown on the velocity magnitude isosurface for the 𝑅𝑎 = 10 3 case. 
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In the case when the stochastic dimension is equal to 𝑑 = 1 , the collo-
ation points’ selection is straightforward, as it depends on the choice of
uadrature rule. The optimal choice is Gauss quadrature [12] . Depend-
ng on the pdf of the input random variables, one can choose between
ifferent Gauss quadrature rules, e.g. Gauss–Hermite, Gauss–Legendre
r Gauss–Jacobi for variables with normal, uniform or beta distribu-
ions, respectively. 

The real challenge, however, is a numerical computation of multi-
imensional integral for d > 1, especially for d ≫1. The most natural
pproach to multi-dimensional integration is the tensor product of 1-
imensional quadrature rules which leads to relatively simple general-
sation of integration properties from 1-dimensional to d -dimensional
ase [12] . The multi-dimensional integral for the calculation of weights
16) is, thus, given as: 

 𝑖 = ∫Γ1 𝑙 𝑖 ( 𝐗 𝟏 ) 𝑝 ( 𝐗 𝟏 ) 𝑑 𝐗 𝟏 ⋅ ∫Γ2 𝑙 𝑖 ( 𝐗 𝟐 ) 𝑝 ( 𝐗 𝟐 ) 𝑑 𝐗 𝟐 ⋅… ⋅ ∫Γ𝑑 𝑙 𝑖 ( 𝐗 𝐝 ) 𝑝 ( 𝐗 𝐝 ) 𝑑 𝐗 𝐝 . 

(20) 

he total number of simulation points is 
∏𝑑 

𝑘 =1 𝑚 𝑘 . The basis function
 i ( X ) is given as the tensor product of 1-dimensional Lagrange basis
unction in each dimension: 

 𝑖 ( 𝜉) = 𝑙( 𝜉( 𝑖 ) 1 ) ⊗ 𝑙( 𝜉( 𝑖 ) 2 ) ⊗…⊗ 𝑙( 𝜉( 𝑖 ) 
𝑑 
) (21)

n most of the applications, the number of collocation points in each di-
ension is equal, i.e. ∀𝑘 ⇒ 𝑚 𝑘 = 𝑚, thus the total number of simulations

s m 

d . Obviously, the number of simulation points grows exponentially
ith the number of input random variables, therefore the tensor product

s used mostly at lower dimensions. The generally accepted limitation
s d ≤ 5 [12] . For higher dimensions d ≫1, different variants of sparse
rid algorithms are proposed, which reduce the total number of points
.r.t. tensor product rules tremendously [12] . In order establish the ap-
ropriate value for the number of collocation points m k , we increase m k 
p to the point where the results converge to a stable common value. 

.2. Sensitivity analysis 

The definition for the sensitivity analysis adopted in this work, is
he study of how the uncertainty in the output of a mathematical model
r system (numerical or otherwise) can be apportioned to different
ources of uncertainty in its inputs [56] . The ideal approach would be to
un both uncertainty quantification and sensitivity analysis in the same
tochastic framework, usually uncertainty quantification preceding the
ensitivity analysis, thus minimising the computational burden as much
s possible. Within the presented stochastic framework the sensitivity is
easured by monitoring the change in the variance of the output after

omputing the variance for d univariate cases. Thus, the impact factor
f each input parameter is given by the following formula: 

 𝑖 = 

𝜎2 
𝑖 
( 𝑌 ) 

𝜎2 ( 𝑌 ) 
(22)

here 𝜎2 ( Y ) is the total variance of d -dimensional case, and 𝜎2 
𝑖 
( 𝑌 ) is

he variance of the i th one-dimensional case. This approach may be de-
ned as a one-at-a-time (OAT) approach. Although it cannot detect the
resence of interactions between input variables, it is still a computa-
ionally inexpensive way of identifying the relative impact of the input
ariables. 

. Nanofluid flow problem 

We apply the methods developed in this paper by simulating the flow
nd heat transfer of water-based nanofluid seeded with Al 2 O 3 nanoparti-
les. The thermophysical properties of water and solid Al 2 O 3 nanoparti-
les were taken from Oztop and Abu-Nada [57] , and are listed in Table 1 .

We study the development of natural convection in a differentially
eated cubic cavity. We consider six cases combining two nanoparti-
le volume fractions ( 𝜑 = 2 . 5% and 𝜑 = 5% ) and three Rayleigh number
alues ( 𝑅𝑎 = 10 3 , 𝑅𝑎 = 10 4 and 𝑅𝑎 = 10 5 ). 
189 
The boundary conditions are as follows: Two opposite vertical walls
re heated and/or cooled to a constant temperature. All the other walls
re adiabatic. In terms of the velocity field, all walls have a no-slip
oundary condition applied. Vorticity boundary conditions are calcu-
ated during the algorithm, as described above. Initially, the flow veloc-
ty is zero, but during the simulation, a steady laminar flow develops,
hich features a large clockwise rotating vortex carrying the nanofluid
p the hot wall and down the cold wall. We analyse the flow structure
nd heat transfer in steady state. The flow domain and the boundary
onditions are shown in Fig. 2 . 

The nanofluid flow is a function of the domain geometry, boundary
onditions and effective properties. For engineering practice, the wall
eat flux is an important parameter, which reveals the effectiveness of
 nanofluid as compared to other fluids. The heat flux 𝑄̇ can be writ-
en using the pure fluid thermal conductivity, characteristic flow scales
nd a nondimensional Nusselt number, i.e. 𝑄̇ = 𝑘 𝑓 𝐿 Δ𝑇 ⋅𝑁𝑢 . The Nus-
elt number, Nu , is defined as the integral of the temperature flux at a

all, i.e. 𝑁𝑢 = 

𝑘 𝑛𝑓 

𝑘 𝑓 
∫Γ ∇⃗ 𝑇 ⋅ 𝑑 Γ, where ⃗Γ is the wall. Variation of heat flux

ver the surface of the wall is expressed using the local Nusselt number:
𝑢 𝑙 = 𝑘 𝑛𝑓 ∕ 𝑘 𝑓 ⃗∇ 𝑇 ⋅ Γ⃗∕ |Γ⃗|. 
Since a very large number of simulations is foreseen, (around

0,000), we had to be careful to choose a computational mesh, which
enerates results fast enough so that 20,000 simulations are feasible,
nd, at the same time, is dense enough to produce mesh-independent
esults. In order to determine the appropriate mesh density, we meshed
he domain with hexahedral elements having 17 3 , 25 3 and 41 3 nodes,
nd ran the simulations with 𝜑 = 5% and 𝑅𝑎 = 10 3 . We compared the
eat flux through the hot wall, and found the values expressed as Nus-
elt number to be 1.1857, 1.1832 and 1.1831 for the 17 3 , 25 3 and
1 3 mesh, respectively. The difference between the results is less than
.2%. For a more detailed look at the results, we present in Fig. 3 tem-
erature, velocity and vorticity profiles for all three meshes. We ob-
erved only minor differences between solutions. The wall CPU time
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Fig. 3. Comparison of flow results on 17 3 , 25 3 and 41 3 mesh for the 𝜑 = 5% and 𝑅𝑎 = 10 3 case. Velocity (left panel), vorticity (middle panel) and temperature (right 
panel) are shown. Profiles were exported along the x and z axes through the centre of the domain. 

Fig. 4. Nusselt number results obtained for the six test cases using OAT analysis of all five random variables. Unperturbed solution is shown with black dashed line. 
The results obtained by using 5 and 7 collocation points are virtually identical. 
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eeded for simulation was 1 min, 1 h and 12 h for the 17 3 , 25 3 and
1 3 mesh, respectively, using Xeon E7 v3 Core i7. Based on this, we
ecided to perform all simulations using the 25 3 mesh. Using 16 pro-
essors, the total simulation time for all results in the paper was 3
onths. 

. Results 

In the first step, 12 input parameters were modelled as random, with
niform distribution set as 10% variation from nominal value: Volume
190 
raction, temperature difference, fluid viscosity, heat capacity, density,
hermal conductivity, thermal expansion coefficient, characteristic di-
ension, particle heat capacity, density, thermal conductivity, thermal

xpansion coefficient. To reduce the dimensionality of the problem, 12
nivariate Test Cases (TC) were done following the logic of the OAT
rinciple. After comparing the variances from 12 TCs, five input vari-
bles are recognised as the important ones, while the others will be
eglected in further computations. Those 5 input variables are: volume
raction, temperature difference, fluid viscosity, heat capacity, and ther-
al conductivity. 
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Fig. 5. Nusselt number standard deviation results ob- 
tained for the six test cases using OAT analysis with 
7 collocation points of all five random variables. Vol- 
ume fraction parameter shows significantly lower stan- 
dard deviation, while all other random variables ex- 
hibit variance of similar order of magnitude. 

Fig. 6. Standard deviation profiles along the x axis 
through the centre of the domain. Standard devia- 
tion for main vortex perpendicular ( y ) component of 
vorticity, horizontal and vertical velocity and tem- 
perature are shown. OAT approach is used for vol- 
ume fraction (left panel) and temperature difference 
(right panel) for the 𝑅𝑎 = 10 4 and 𝜑 = 2 . 5% case. 
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.1. OAT results 

In Fig. 4 we examine the convergence of the stochastic analysis using
he OAT approach. For each of the five random variables we performed
AT analysis using 𝑚 𝑘 = 3 , 5 and 7 stochastic collocation points. We
onsidered all six test cases. We observed that the results obtained by
sing 5 and 7 collocation points are virtually identical, and, thus, con-
luded that 5 collocation points are a good choice for the multi ran-
om variable analysis. For each of the six Test Cases this means that
e need to run 5 5 = 3125 simulations. Furthermore, the results of the
AT analysis show that the concentration seems to have the smallest

mpact on the results. Uncertainty in fluid viscosity and heat conductiv-
ty leads to an increase of the heat transport. In contrast, variation in
hermal capacity and temperature difference leads to a decrease of heat
ransfer. 

In Fig. 5 we observe an increase in the Nusselt number standard de-
iation with Rayleigh number value. This was expected, since at high
ayleigh number values, the temperature difference, which is driving

he flow, is higher, and in consequence, convection becomes the most
mportant heat transfer mechanism. Thus, the non-linear nature of the
henomenon is more pronounced, and so the results are more suscep-
ible to changes in the input parameters. Comparing the random vari-
bles studied in the OAT analysis presented in Fig. 5 , we observe that
he standard deviation of volume fraction is significantly lower than the
tandard deviation of all other random variables. This is caused by the
act that the nanoparticle volume fractions used to prepare the nanoflu-
ds are small, and thus have a small influence of the effective properties
f the nanofluid. 

The Nusselt number is an integral parameter, showing the total heat
ransfer through the system. From an engineering point of view, it is
mportant to note that the Nusselt number standard deviation is small,
hus the overall heat transfer is not affected greatly by the changes in
nput parameters. For a more detailed look, we examined the result of
191 
he OAT analysis on the flow field profiles. In Fig. 6 we show standard
eviations obtained by the OAT approach for the main vortex perpen-
icular ( y ) component of vorticity, horizontal and vertical velocity and
emperature. Comparing standard deviations obtained using 3, 5 and 7
tochastic collocation points, we observe that the differences are small.
orizontal velocity displays a larger difference between the 3 SC points

esults and 5 and 7. Again, we conclude that a choice of 5 collocation
oints is reasonable. 

.2. Full tensor product results 

In this subsection we present results obtained by considering five ran-
om variables and five stochastic collocation points for six cases (three
ayleigh numbers times two volume fractions). The mean temperature

sotherms are shown in Fig. 7 . In the case where conduction dominates
eat transfer ( 𝑅𝑎 = 10 3 ), we observe an approximately linear change of
emperature in the horizontal direction between the hot and the cold
alls. On the other hand, when convection dominates ( Ra > 10 3 ), we
bserve the appearance of temperature stratification, i.e. the top part
f the domain is hot and the bottom cold, while there is an approxi-
ately linear distribution of temperature in vertical direction. At the

ame time, large temperature gradients appear close to the hot and cold
alls. 

Next, we focus on the 𝑅𝑎 = 10 5 , 𝜑 = 2 . 5% case and plot the standard
eviation of temperature, velocity and vorticity in Fig. 8 . The figure
xposes clearly areas in the flow field where the greatest changes are
xpected. The largest temperature, velocity and vorticity changes are
xpected close to the hot and cold walls (or at the walls in the case of
orticity). This is due to the fact that the flow there exhibits the largest
radients of all field functions. 

In the Figs. 9 and 10 we examine the areas in the flow where the
ighest changes are expected due to variation of the input parameters.
e observe that, in the conduction dominated regime ( 𝑅𝑎 = 10 3 ), high
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Fig. 7. Mean temperature isotherms shown on slices through the domain for all six test cases. 

t  

a  

h  

t  

F  

b  

h  

c  

I  

d  

w
 

t  

t  

t  

b  

i  

f  

c  

d  

s  

t  

t  

i  

t  

o
 

n  

d  

Table 2 

Statistical moments for overall heat transfer expressed as Nusselt number. 

Case Nusselt number moments 

Ra 𝜑 Mean Variance Standard Skewness Kurtosis 
deviation 

10 3 2.5% 1.126 1 . 39 ⋅ 10 −4 1 . 18 ⋅ 10 −2 0.319 2.86 

10 4 2.5% 2.098 69 . 4 ⋅ 10 −4 8 . 33 ⋅ 10 −2 0.329 2.87 

10 5 2.5% 4.586 269 ⋅ 10 −4 16 . 4 ⋅ 10 −2 0.312 2.85 

10 3 5% 1.184 0 . 86 ⋅ 10 −4 0 . 93 ⋅ 10 −2 0.319 2.86 

10 4 5% 2.109 66 . 7 ⋅ 10 −4 8 . 17 ⋅ 10 −2 0.334 2.88 

10 5 5% 4.635 265 ⋅ 10 −4 16 . 3 ⋅ 10 −2 0.314 2.86 
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emperature field variance is observed close to the centre of the top
nd bottom walls. In the convection dominated regime ( Ra > 10 3 ), the
igh variance areas are found closer to the bottom of the hot wall and
he top of the cold wall. Looking at vorticity variance isosurfaces in
ig. 10 , we also notice the area close to the vertical hot and cold walls to
e the places where the vorticity variance is largest. Variance analysis
as revealed that the areas with the largest flow solution uncertainty
oincides with areas where the gradients on the flow fields are largest.
n the present case, where we study natural convection between two
ifferentially heated walls, this occurs near the vertical hot and cold
alls. 

From an engineering point of view, the most important parameter is
he overall heat transfer through the cavity, which can be expressed as
he Nusselt number. We present the relationship between overall heat
ransfer expressed as the Nusselt number and the temperature difference
etween the walls expressed as the Rayleigh number in Fig. 11 . The
ncrease of heat transfer with temperature difference is explained by the
act that convection is a more effective heat transfer mechanism than
onduction. Thus, at high temperature differences, where convection
ominates, the overall heat transfer is increased. The stochastic analysis
howed that the variance of overall heat transfer also increases with the
emperature difference. This is caused by the fact that flow and heat
ransfer are non-linear phenomena, and when the non-linear character
s more important (as in the case of high temperature difference between
he walls), small differences in input parameters have a larger influence
n the results. 

In Fig. 12 , we observe the relationship between the y compo-
ent vorticity flux through the vertical hot wall and the temperature
ifference between the walls. The vorticity flux increases with the
192 
emperature difference. This is an indication of the intensity of the pri-
ary vortex, which is formed in the cavity. The primary vortex rotates

he fluid mostly in the 𝑥 − 𝑧 plane, thus the y component of vorticity is a
easure of its strength. The stochastic analysis reveals that the influence

f input parameters on the results is greater at a high Rayleigh number
ows, where the temperature difference between the wall is higher, and
he non-linear character of the phenomenon is more exposed. 

In the Table 2 we present the statistical moments for overall heat
ransfer expressed as Nusselt numbers. We observe that the skewness
nd kurtosis seem to take constant values, irrespective of the Rayleigh
umber and nanoparticle concentration. Positive skewness is observed,
eaning that a long tail of Nusselt number distributions can be observed

n the right-hand-side of the distribution, where large Nusselt numbers
ie. Kurtosis of less than 3 is observed, meaning that the Nusselt number
istribution is platykurtic, i.e. broad. 
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Fig. 8. Standard deviation of temperature, velocity and vorticity for the 𝑅𝑎 = 10 5 , 𝜑 = 2 . 5% case plotted in on slices through the domain. Areas where high values 
of standard deviation are observed are exposed. 

Fig. 9. Isofurfaces of temperature variance ( 𝜎2 = 10 −4 ) reveals the areas in the flow field, where the temperature is most affected in changes in input parameters. 
Nanoparticle concentration 𝜑 = 2 . 5% , Rayleigh number values are 𝑅𝑎 = 10 3 , 𝑅𝑎 = 10 4 and 𝑅𝑎 = 10 5 from left to right. 
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Skewness profiles are shown in Fig. 13 . We observe values in
he range of ± 0.5, which indicates that the skewness of flow field
istributions changes within the domain. Changes are more evi-
ent in convection dominated flows (right panel in Fig. 13 ), where
he skewness distribution appears chaotic. On the contrary, in con-
uction dominated flow, (left panel), we observe order, for exam-
le, the skewness is positive in areas of positive non-dimensional
193 
emperature (on the warm side of the cavity) and negative on the other
ide. 

Kurtosis of the temperature, velocity and vorticity fields is shown in
ig. 14 . In most of the domain we observe a kurtosis of around 2.7, and,
ith that, platykurtic distribution of our flow fields. Isolated regions in

he domain exist, where kurtosis is above 3, and the flow fields behave
s leptokurtic. 
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Fig. 10. Isofurfaces of y component of vorticity variance (set at one half of maximal value in the domain) reveals the areas in the flow field, where the vorticity is 
most affected in changes in input parameters. Nanoparticle concentration 𝜑 = 2 . 5% , Rayleigh number values are 𝑅𝑎 = 10 3 , 𝑅𝑎 = 10 4 and 𝑅𝑎 = 10 5 from left to right. 

Fig. 11. Relationship between overall heat transfer 
expressed as the Nusselt number and the temperature 
difference between the walls expressed as Rayleigh 
number. Left panel shows the case of nanoparticle 
concentration 𝜑 = 2 . 5% , right panel 𝜑 = 5% . Standard 
deviation obtained by stochastic analysis is also dis- 
played. 

Fig. 12. Relationship between y vorticity component 
and the temperature difference between the walls ex- 
pressed as Rayleigh number. Left panel shows the case 
of nanoparticle concentration 𝜑 = 2 . 5% , right panel 
𝜑 = 5% . Standard deviation obtained by stochastic 
analysis is also displayed. 

194 
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Fig. 13. Temperature, velocity and vorticity skewness profiles for 𝜑 = 2 . 5% and 𝑅𝑎 = 10 3 (left panel), 𝑅𝑎 = 10 4 (centre panel) and 𝑅𝑎 = 10 5 (right panel). 

Fig. 14. Temperature, velocity and vorticity kurtosis for the 𝑅𝑎 = 10 5 , 𝜑 = 2 . 5% case plotted on slices through the domain. Areas where high or low values of kurtosis 
are observed are exposed. 
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. Conclusions 

We presented a Fast Boundary-Domain Integral Method for the sim-
lation of natural convection of nanofluids, coupled with a Stochastic
ollocation Method aimed at investigating the influence of input pa-
ameters on flow and heat transfer solutions. The results revealed that
he influence of input parameters, such as nanoparticle volume fraction,
eat conductivity, heat capacity, etc., is more important in convection
195 
ominated flows as opposed to conduction dominated flow regimes. Ad-
itionally, we discovered that the statistical moments reveal the greatest
ncertainty in simulation results in areas, where large gradients of flow
elds appear. In the case investigated in this paper, the area along the
ot and cold walls exhibited the largest variance of simulation results.
e found that fluid viscosity and nanoparticle thermal conductivity are

he parameters which cause the largest variance in the simulation re-
ults. Care should be taken that the values of these parameters are as
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ccurate as possible when performing nanofluid simulations. The influ-
nce of other parameters, including the nanoparticle volume fraction,
as smaller. 
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