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ARTICLE

Boundary-domain integral method and homotopy analysis method for
systems of nonlinear boundary value problems in environmental
engineering

M. A. AL-Jawarya, G. H. Rahdia and J. Ravnikb

aDepartment of Mathematics, College of Education Ibn-AL-Haitham, Baghdad University, Baghdad, Iraq; bFaculty of Mechanical
Engineering, University of Maribor, Maribor, Slovenia

ABSTRACT
In this paper we present the development of numerical methods for two problems in chem-
ical engineering: adsorption of carbon dioxide into phenyl glycidyl ether and diffusion and
reaction processes in a porous catalyst. Both problems are modelled by systems of two
coupled nonlinear ordinary differential equations. Dirichlet and Neumann type boundary
conditions are considered. We develop the standard homotopy analysis method and the
boundary-domain element method to solve for the unknown steady-state concentrations of
reactants. The validity of the proposed methods is checked and demonstrated by numerical
examples. Convergence rates are compared and the advantages and drawbacks of the pro-
posed methods are discussed and compared to the Mathematica NDSOLVE solver. We show,
that the proposed homotopy analysis method features exponential convergence rate and is
highly accurate and efficient. As low as 6 terms are needed to reach error norms of 10�5:
Furthermore, the boundary-domain integral approach is also capable of solving the same
problem very efficiently, using a very coarse computational mesh (21 nodes).
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1. Introduction

Numerical experiments and simulations
(AbdAlmjeed, 2017; Aswhad, 2011) are frequently
used to model natural and engineering phenomena
in the fields of physics, chemistry, biology and envir-
onmental sciences. The phenomena are usually mod-
elled by a system of equations with appropriate
boundary and initial conditions. One encounters
ordinary or partial differential equations, which may
be linear or nonlinear. Unfortunately, most of these
equations do not have an analytical solution or
closed form, which could be represented by well-
known elementary functions. Therefore, there is
always a demand to develop reliable and efficient
mathematical methods to obtain either a numerical
or an approximate solution of these problems.

Carbon dioxide is one of the most important
gases in nature (Subramaniam, Krishnaperumal, &
Lakshmanan, 2012) as it is used in photosynthesis.
Furthermore, several engineering systems also make
use of carbon dioxide, such as for extinguishing fires,
for powering of pneumatic systems, for the produc-
tion of carbonated soft drinks and to remove caf-
feine from coffee, precipitation processes (Choe, Oh,
Kim, & Park, 2010; Park, Park, Kim, Park, & Oh, 2004;

Subramaniam et al., 2012; Zhao, Han, Jakobsson,
Louhi-Kultanen, & Alopaeus, 2016). Ever since excess
carbon dioxide has been found to cause global
warming, its chemical fixation is an important
research area in the field of environmental engineer-
ing (Chatterjee, Rayalu, Kolev, & Krupadam, 2016).

We model the adsorption of carbon dioxide (CO2)
into phenyl glycidyl ether (PGE) by relating the con-
centrations of both species using a system of two
coupled nonlinear ordinary differential equations.
This process has been studied by Park et al. (2004)
and Choe, Oh, et al. (2010). The approximate analyt-
ical expression for the steady-state concentrations of
carbon dioxide and phenyl glycidyl ether have been
presented by Subramaniam et al. (2012) using the
Adomian’s decomposition method (ADM). The draw-
back of this approach is the need to calculate the
Adomian polynomials, which is computationally
demanding. The methods proposed in this paper, do
not have such a drawback.

The Lane-Emden equation is used to model many
phenomena in astrophysics and mathematical phys-
ics. The description of diffusion and reaction proc-
esses in a porous catalyst, which we consider in this
paper, is one of them. Other examples include: the
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thermal behaviour of a spherical cloud of gas, the
theory of stellar structure and the theory of thermi-
onic currents. The systems of Lane-Emden equations
arise when modelling many other physical phenom-
ena as well (Khojasteh Salkuyeh & Tavakoli, 2016;
Sun, Liu, & Keith, 2004; Wazwaz, 2001; Wazwaz &
Rach, 2011). Wazwaz et al. ( Wazwaz, Rach, & Duan,
2013; Wazwaz, Rach, & Duan, 2014) used the
Adomian decomposition method for solving the
Volterra integral form of the Lane-Emden equations
with initial values and boundary conditions.

Homotopy analysis method was developed by
Liao (1992) and Liao (2003). Following that, the
application of this method was widespread. It was
successfully used to solve many linear and nonlinear
equations and problems, for example: simulation of
nonlinear water waves (Tao, Song, & Chakrabarti,
2007), nonlinear heat transfer (Abbasbandy, 2006;
2007; Rashidi et al., 2014; Sajid & Hayat, 2008),differ-
ential-difference equation (Wang, Zou, & Zhang,
2007), solving cubic and coupled nonlinear
Schr€odinger equations (Hassan & El-Tawil, 2011) and
many others (Akram & Sadaf, 2017; Alamri, Ellahi,
Shehzad, & Zeeshan, 2019; Ellahi, 2013; Khan,
Bukhari, Marin, & Ellahi, 2019; Kumar & Kumar, 2014;
Prakash, Tripathi, Triwari, Sait, & Ellahi, 2019; Riaz,
Ellahi, Bhatti, & Marin, 2019; Zeeshan, Shehzad,
Abbas, & Ellahi, 2019). These successful applications
affirmed the authenticity, flexibility and effectiveness
of HAM.

The main advantage of the standard HAM is that
in most cases its solution series converges very rap-
idly. Typically, only few iterations lead to a very
accurate solution. HAM is a universal method and
can be used to solve different types of nonlinear
equations. Due to homotopy, HAM gives great free-
dom in the selection of initial approximations and
auxiliary linear operators. The original HAM has been
upgraded by introducing an auxiliary parameter h,
which enables control of the convergence of the ser-
ies. With this modification, the HAM is more efficient
than the ADM (Adomian, 1994).

The domain-decomposition based boundary-
domain integral method (BDIM) has been success-
fully used to solve various fluid flow and heat trans-
fer problems (Ravnik, �Skerget, & �Zuni�c, 2008; Ravnik,
Skerget, & Zunic, 2009). It is based on the boundary
element method (Haghighat & Binesh, 2014). In this
work, we rework the method for the solution of two
chemical engineering problems as an alternative to
the homotopy analysis method. The proposed
method is second order accurate and can, due to
the inclusion of function derivatives into the system
of equations, be a good alternative for problems,
which feature sharp function profiles and
large gradients.

In this work, HAM and BDIM are developed for the
solution of two chemical engineering problems. Both
methods are derived and adapted to work for the
two chosen chemical engineering problems. The
advantage of the proposed HAM method in this
paper is that it features exponential convergence rate
and it is not hindered by the nonlinearity of the prob-
lem, which is the case with the Adomian decompos-
ition method, which was proposed by other authors.
In the HAM method proposed in this paper, there is
no need for calculation of the Adomian polynomials.
Additionally, we present the boundary-domain inte-
gral approach and show that it is also capable of
solving the same problem very efficiently, using a
very coarse computational meshes.

The paper is organized as follows. The governing
equations describing the chemical processes are pre-
sented in section 2. Boundary element based solu-
tion is shown in section 3. Homotopy analysis
method is developed in section 4. Simulations and
discussion is given in section 5, which is followed by
conclusions in section 6.

2. Considered problems

2.1. Diffusion and reaction processes in
porous catalyst

Diffusion and reaction processes in porous catalyst
have been a topic of research of several authors.
Sun et al. (2004) consider a planar nonlinear model
of diffusion and reaction in porous catalysts using a
decomposition method. Similarly, a spherical pellet is
considered by Shi-Bin, Yan-Ping, and Scott (2003).
Rach, Duan, and Wazwaz (2014) proposed the
Adomian decomposition method for the solution of
the catalytic diffusion reactions.

Considering mass balance on a differential volume
element in a spherical porous medium we may write
the following transient diffusion-reaction equation
(Bird, Stewart, & Lightfoot, 2007)

@c0

@t
¼ r � Drc0�R, (1)

where c is the reactant concentration, t is time, D
the effective diffusivity of the reactant and R is the
rate of reaction per unit volume. We assume that
the process is steady state and that the diffusivity is
constant (temperature variations are small), thus we
may simplify

Dr2c0 ¼ R, (2)

Let r measure the distance from the centre of the
catalyst pellet (r0 ¼ 0) to the surface (r0 ¼ r0). The
process is subjected to the following boundary con-
ditions
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@c0

@r0

����
r0¼0

¼ 0, c0ðr0Þ ¼ c0 (3)

where cs is the reactant concentration at the surface
of the porous medium. Now we consider a n – th
order irreversible reaction and model the reaction
term using power-law kinetics as R ¼ kvc0n, where
the reaction constant is kv and it is in general tem-
perature dependent.

Introducing nondimenzionaliton r ¼ r0=r0 and c ¼
c0=c0 and considering spherical symmetry we get

dc2

dr2
þ 2

r
dc
dr

¼ /2cn,
dc
dr

����
r¼0

¼ 0, cð1Þ ¼ 1 (4)

where / is the Thiele modulus /2 ¼ r20kc
n�1
0 =D: The

derivation of the above expression is based on the
validity of Fick’s law, i.e., concentration independent
diffusivity.

In multicomponent mixture the transport of spe-
cies must be described by Maxwell-Stefan equations.
The application of these to mass transport in porous
medium leads to the Dusty Fluid Model (Higler,
Krishna, & Taylor, 2000). Applying these, we obtain
the following catalyst diffusion model (Flockerzi &
Sundmacher, 2011)

dc2

dr2
þ 2

r
dc
dr

¼ N
D
R, (5)

where D is a constant matrix of diffusion coefficients,
N is the stoichiometry matrix of the considered reac-
tion network and R is a vector of reaction kinetics
expressions. Since chemical reactions are mostly
based on nono-molecular or bi-molecular events, the
rate expressions are linear, bilinear or quadratic
expressions. For this kind of reaction kinetics, we can
identify a sub-vector u containing concentrations of
species which appear in linear and bilinear forms
and another vector v containing concentrations of
species which also appear in quadratic terms. An
example of such a case is acid-catalysed dimerization
of C4-olefines (Talwalkar et al., 2007). This class of
catalyst diffusion problems can be reformulated as a
2D Lane-Emden boundary value problem (Flockerzi
& Sundmacher, 2011):

d2u
dr2

þ 2
r
du
dr

¼ k11u2 þ k12uv (6)

d2v
dr2

þ 2
r
dv
dr

¼ k21u2 þ k22uv (7)

in the domain r 2 ½0, 1� having the following bound-
ary conditions

du
dr

����
r¼0

¼ 0, uð1Þ ¼ b1,
dv
dr

����
r¼0

¼ 0, vð1Þ ¼ b2:

(8)

Here, b1 and b2 are positive constants and k is a
nonzero matrix.

2.2. Absorption of carbon dioxide into phenyl
glycidyl ether

Due to global warming, chemical fixation of carbon
dioxide has become an important research topic and
adsorption is on the processes capable to address
this issue. The problem of absorption of carbon diox-
ide into phenyl glycidyl ether has been investigated
by several authors. Choe, Oh, et al. (2010) experi-
mentally studied absorption of carbon dioxide with
the aid of a catalyst. (Duan, Rach, & Wazwaz, 2015;
Duan & Rach, 2011) proposed the use of Adomian
decomposition method for the simulation of the
absorption of carbon dioxide into phenyl glycidyl
ether. Theoretical analysis of mass transfer was given
by Subramaniam et al. (2012).

The reaction consists of two consecutive steps: a
reversible reaction between PGE and a catalyst THA-
CP-MS41 (QX) to form an intermediate complex C1
and a reaction between the complex and carbon
dioxide to form the catalyst and a five-membered
cyclic carbonate C. The reactions are

Bþ QX $k1
k2
C1 (9)

Aþ C1!k3C þ QX (10)

k1, k2 and k3 are reaction rates. Governing equations
(Bird et al., 2007) for mass balances of CO2 and PGE
obtained using film theory are (Choe, Oh, et al.,
2010):

rA, cons ¼ cBSt
1
k1
þ 1

K1k3ca
þ cB

k3cA

, DA
d2cA
dz2

¼ rA, cons,

DB
d2cB
dz2

¼ rA, cons,

(11)

where St is the area of the catalyst, cA and cB are
concentrations of CO2 and PGE, K1 is the reaction
equilibrium constant, DA and DB are diffusivity of
CO2 and PGE, rA, cons is the steady state CO2 chemical
reaction rate and z is the distance. The boundary
conditions are: cAðz ¼ 0Þ ¼ cA0, dcB=dzðz ¼ 0Þ ¼
0, cAðz ¼ LÞ ¼ cAL, cBðz ¼ LÞ ¼ cBL: These equations
may be normalized and rewritten in terms of the
non-dimensional distance r ¼ z=L :

d2u
dr2

¼ a1uv
1þ b1uþ b2v

(12)

d2v
dr2

¼ a2uv
1þ b1uþ b2v

(13)

with boundary conditions:

uð0Þ ¼ 1, uð1Þ ¼ k,
dv
dr

����
r¼0

¼ 0, vð1Þ ¼ 1:

(14)

The a1, a2, b1 and b2 are normalized parameters and
u and v are dimensionless concentrations of CO2 and
PGE. The ratio between CO2 concentrations at both
sides of the domain is k ¼ cA0=cAL:
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3. Solution by boundary-domain
integral method

Due to the diffusive nature of the considered trans-
port processes, both boundary value problems,
defined by Equations (6)–(8) and (12)–(14) feature a
second order derivative, which describes diffusion at
constant diffusivity. Mixed Dirichlet/Neumann
boundary conditions are known for both cases. For a
general 3 D setting, all equations may be written as

r2u ¼ f , (15)

where u is the unknown function and f is a nonlinear
forcing term. We consider Dirichlet and/or Neumann
type boundary conditions

C ¼ @X ¼ CD [ CN,
uðrÞ ¼ �uðrÞ, r 2 CD,
n � ruðrÞ ¼ qðrÞ ¼ �qðrÞ, r 2 CN,

(16)

where CD is the Dirichlet part of the boundary and
CN is the Neumann part. At the Neumann part of
the boundary the flux qðrÞ is known and set to a
known value of �qðrÞ: At the Dirichlet part of the
boundary, the function uðrÞ is set to a known value
of �uðrÞ: Using a source point n 2 C at the boundary
we can recast the Poisson type equation (15) into its
integral representation (Wrobel, 2002):

cðnÞuðnÞ þ
ð
C
uru? � dC ¼

ð
C
u?ru � dCþ

ð
X
u?fdX,

(17)

where u?ðr, nÞ ¼ 1=4pjr�nj is the fundamental solu-
tion for the diffusion operator, The free coefficient
cðnÞ is determined using solid surface angle at the
source point position. The domain integral term in
Equation (17) results from the source term on the
right hand side of Equation (15).

In order to write a discrete version of Equation
(17) we must interpolate the unknown function and
its flux over boundary and domain elements. We
employ 27 noded hexahedral domain elements,
which enable quadratic interpolation of function in
the domain using shape functions Ui: Flux is interpo-
lated on the boundary only. We use four noded dis-
continuous linear interpolation functions /i:

Interpolation of function at boundary elements is
performed using nine nodes and quadratic shape
functions ui: Finally, the discrete version of Equation
(17) is

cðnÞuðnÞ þ
X
b

X
i

ab, iub, i

ð
Cb

uiru? � dC

¼
X
b

X
i

ab, iqb, i

ð
Cb

/iu
?dC

þ
X
e

X
i

fe, i

ð
Xe

Uiu?dX,

(18)

where b lists boundary elements, e domain elements
and i shape functions. The integrals of Equation (18)
depend solely on the mesh geometry and source
point location. They are calculated in advance and
reused during the iterative solution process. The
Gaussian quadrature algorithm is used to calculate
the integrals. We use indirect calculation of cðnÞ
using a known solution of the rigid body movement.
The accuracy of integration is checked using nodes
with known value of cðnÞ:

A collocation scheme is used to write a system of
linear equations for the unknown values of function
and flux. The source point n is placed into boundary
nodes and the following matrices of integrals are
thus calculated:

H½ � ¼
ð
C
uiru? � ndC, G½ � ¼

ð
C
/iu

?dC,

B½ � ¼
ð
X
Uiu?dX:

(19)

Let the square brackets denote matrices and curly
brackets vectors of nodal values of functions. Using
this notation the discrete version of Equation (18) is

H½ �fug ¼ G½ �fqg þ B½ �ffg: (20)

As the boundary-domain integral method requires
discretization of the domain and since the matrix of
domain integrals ½B� is full, we avoid excessive stor-
age and computational time usage by using a
domain decomposition technique (Ram�sak, �Skerget,
Hriber�sek, & �Zuni�c, 2005) Domain decomposition
leads to a sparse system of equations. In this work,
we consider the subdomains to be domain mesh
elements. Connection between subdomains is
obtained by considering that the function and the
flux must be continuous across subdomains bounda-
ries. The described procedure leads to a sparse and
over-determined system of linear equations. We use
(Paige & Saunders, 1982) least-squares solver with
diagonal preconditioning to find the solution.

As the problems considered in this paper are non-
linear (the forcing function f in Eq. (15) depends on
u), we set up an iteration procedure during which,
we estimate f using values of u in the previous iter-
ation. Underrelaxation of 0.1 was used to achieve
convergence. Furthermore, as the problems consid-
ered are 1D and the BDIM method is written in 3D,
we used appropriate (zero flux) boundary conditions
on the side walls.

4. Solution by homotopy analysis method

To verify the basic idea of HAM for a nonlinear sys-
tem of ordinary differential equations (Bataineh,
Noorani, & Hashim, 2009; Gabriel, 2016; Liao, 2004;
Wazwaz, 2009), let us consider this problem:
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Ni uiðxÞ½ � ¼ 0, i ¼ 1, 2, :::, n (21)

where Ni are the nonlinear operators, x is the inde-
pendent variable and uiðxÞ are the unknown func-
tions. To clarify this method simplify, we will ignore
the conditions. Liao (2004) and Wazwaz (2009) config-
ured the so-called zeroth-order deformation equation

ð1�qÞL hiðx; qÞ�ui, 0ðxÞ½ � ¼ qhifNi hiðx; qÞ½ �g (22)

where q 2 ½0, 1� represents an embedding parameter,
hi represent the nonzero auxiliary functions, L is the
auxiliary linear operator, ui, 0ðxÞ represent the initial
guesses of the function uiðxÞ and hiðx; qÞ are
unknown functions. The advantage of HAM is that
there is great freedom in the selection of the auxil-
iary objects, by means of hi and L.

It is obvious that when putting the parameter
q¼ 0 and q¼ 1, Equation (22) will become

hiðx; 0Þ ¼ ui, 0ðxÞ and hiðx; 1Þ ¼ uiðxÞ, (23)

respectively. Therefore, when q increases from 0 to
1, the solution hiðx; qÞ will vary from the initial guess
ui, 0ðxÞ to the solution uiðxÞ: The expansion of hiðx; qÞ
in Taylor series with respect to q will be:

hiðx; qÞ ¼ ui, 0ðxÞ þ
Xþ1

m¼1

ui,mðxÞqm, (24)

where

ui,m ¼ 1
m!

@mhiðx; qÞ
@qm

����
ðq¼0Þ

: (25)

The auxiliary parameters hi are the important to
ensure the convergence of the series (Liao, 1992).
So, if the auxiliary parameters hi, the auxiliary linear
operator and the initial guesses ui, 0ðxÞ, are appropri-
ately chosen, then the series (Liao, 1992) will con-
verge at q¼ 1. Thus

hiðx; 1Þ ¼ ui, 0ðxÞ þ
Xþ1

m¼1

ui,mðxÞ, (26)

must be one of the original nonlinear equation’s sol-
utions, which is proved by Liao (2004) and Wazwaz
(2009). If hi ¼ �1, then (Khojasteh Salkuyeh &
Tavakoli, 2016) will become

ð1�qÞL hiðx; qÞ�ui, 0ðxÞ½ � þ qfNi hiðx; qÞ½ �g ¼ 0, (27)

This zeroth-order deformation equation is used in
the homotopy perturbation method (HPM) [Rach
et al., 2014). In accordance with the relationship
(Liao, 2003), the governing equation could be
derived from the zeroth-order deformation equa-
tion (22).

Let us define a vector

~ui, nðxÞ ¼ fui, 0ðxÞ, ui, 1ðxÞ, ui, 2ðxÞ, ui, nðxÞg, i ¼ 1, 2, , n:

(28)

By differentiating equation (27) with respect to
the embedding parameter q for m times, then

substituting q¼ 0 and dividing them by m!, the
mth-order deformation equation is derived as:

L ui,mðxÞ�Xmui,m�1ðxÞ½ � ¼ hiRi,mð~ui,m�1Þ, (29)

where

Ri,mð~ui,m�1Þ ¼ 1
ðm� 1Þ!

@m�1hiðx; qÞ
@qm�1

����
ðq¼0Þ

: (30)

and

Xm ¼ f 0 when m � 1,
1 when m>1:

(31)

Implementing L�1 (an integral operator) on Equation
(29) in both sides, we have

ui,mðxÞ ¼ Xmui,m�1ðxÞ þ hL�1 HðxÞRmðu!i,m�1Þ
� �

, (32)

in iterative way, it is easy to get ui,m for m � 1 and
for mth-order the following will be obtained

uðxÞ ¼
Xj
m¼0

ui,mðxÞ, (33)

An accurate approximate function for the general
differential equation (21) will be obtained when j !
þ1, if Equation (21) possesses a unique solution,
then the HAM will present this unique solution, but
is Equation (21) hasn’t a unique solution then this
method will provide a solution among another
active solutions. In the following, each problem will
be reviewed, and then we will apply the HAM on
each of them.

4.1. The HAM for solving the Lane-Emden
boundary value problem

The boundary value problem for the coupled equa-
tions of Lane-Emden with the product nonlinearities
(Flockerzi & Sundmacher, 2011; Rach et al., 2014) are:

u00ðxÞ þ 2
x
u0ðxÞ þ f1ðuðxÞ, vðxÞÞ ¼ 0, (34)

v00ðxÞ þ 2
x
v0ðxÞ þ f2ðuðxÞ, vðxÞÞ ¼ 0, (35)

f1ðuðxÞ, vðxÞÞ ¼ �k11u2ðxÞ�k12uðxÞvðxÞ,
f2ðuðxÞ, vðxÞÞ ¼ �k21u2ðxÞ�k22uðxÞvðxÞ, (36)

with the following boundary conditions

u0ð0Þ ¼ 0, uð1Þ ¼ b1, v0ð0Þ ¼ 0, vð1Þ ¼ b2:

The above boundary value problem represents a
model of catalytic diffusion reactions (Flockerzi &
Sundmacher, 2011). The parameters of the system:
b1, b2, k11, k12, k21 and k22 can be selected for the
actual chemical reactions. Flockerzi and Sundmacher
(2011) assumed that in the qualitative analysis for
the solutions. In the following, we produce an
approximate solution for the above nonlinear prob-
lem using the HAM (Bataineh et al., 2009; Gabriel,
2016; Liao, 2004; Wazwaz, 2009). In order to
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implement this method to the current system, we
will solve the system introduced by Rach et al.
(2014) which is used in the modified ADM. So, the
system above will be reduced to the following form
of two-coupled nonlinear Fredholm-Volterra integral
equations

uðxÞ ¼ b1 þ
ð1
0
tð1�tÞf1ðuðtÞ, vðtÞÞdt

�
ðx
0
t 1� t

x

� �
f1ðuðtÞ, vðtÞÞdt,

(37)

vðxÞ ¼ b2 þ
ð1
0
tð1�tÞf2ðuðtÞ, vðtÞÞdt

�
ðx
0
t 1� t

x

� �
f2ðuðtÞ, vðtÞÞdt,

(38)

To implement the HAM to the nonlinear system
above, the basic idea of HAM will be applied. So, the
zeroth approximations are

u0ðxÞ ¼ b1,
v0ðxÞ ¼ b2:

The linear operators for Equations (37) and (38),
respectively will be

L hiðx; qÞ½ � ¼ hiðx; qÞ, i ¼ 1, 2: (39)

Now, defining a system of nonlinear operators in
the following forms:

N1½hiðx; qÞ� ¼ h1ðx; qÞ�b1�
ð1
0
tð1�tÞf1ðh1ðt; qÞ, h2ðt; qÞÞdt

þ
ðx
0
t 1� t

x

� �
f1ðh1ðt; qÞ, h2ðt; qÞÞdt, (40)

N2 hiðx; qÞ½ � ¼ h2ðx; qÞ�b2�
ð1
0
tð1�tÞf2ðh1ðt; qÞ, h2ðt; qÞÞdt

þ
ðx
0
t 1� t

x

� �
f2ðh1ðt; qÞ, h2ðt; qÞÞdt, (41)

According to the basic idea of HAM, the mth-
order deformation equations will be

L umðxÞ½ � ¼ Xmum�1ðxÞ þ hR1,mð~um�1,~vm�1Þ, (42)

L vmðxÞ½ � ¼ Xmvm�1ðxÞ þ hR2,mð~um�1,~vm�1Þ, (43)

where, for m � 1, we have

R1,m ¼ um�1ðxÞ�ð1�XmÞb1�
ð1
0
tð1�tÞ

�
�k11

�Xm�1

j¼0

ujum�1�j

�
�k12

�Xm�1

j¼0

ujvm�1�j

��
dt

þ
ðx
0
t

�
1� t

x

��
�k11

�Xm�1

j¼0

ujum�1�j

�

�k12

�Xm�1

j¼0

ujvm�1�j

��
dt, (44)

R2,m ¼ vm�1ðxÞ�ð1�XmÞb2�
ð1
0
tð1�tÞ

�
�k21

�Xm�1

j¼0

ujum�1�j

�
�k22

�Xm�1

j¼0

ujvm�1�j

��
dt

þ
ðx
0
t

�
1� t

x

��
�k21

�Xm�1

j¼0

ujum�1�j

�

�k22

�Xm�1

j¼0

ujvm�1�j

��
dt: (45)

We get the following

u0ðxÞ ¼ b1,
v0ðxÞ ¼ b2,

u1ðxÞ ¼ h
b1

2k11
6

� 1
6
b1

2k11x2 þ b1b2k12
6

� 1
6
b1b2k12x

2

� �
,

v1ðxÞ ¼ h
b1

2k21
6

� 1
6
b1

2k21x2 þ b1b2k22
6

� 1
6
b1b2k22x

2

� �
,

and so on. When h ¼ � 1, we obtain

u1ðxÞ ¼ �b1
2k11
6

þ 1
6
b1

2k11x
2�b1b2k12

6
þ 1
6
b1b2k12x

2,

v1ðxÞ ¼ � b1
2k21
6

þ 1
6
b1

2k21x
2�b1b2k22

6
þ 1
6
b1b2k22x

2,

Also, we get

u2ðxÞ ¼ 7b1
3k112

180
þ 1
60

b1
3k112x4� 1

18
b1

3k112x2

þ 7
120

b1
2b2k11k12 þ

1
40

b1
2b2k11k12x

4� 1
12

b1
2b2k11k12x

2

þ 7
360

b1b2
2k122 þ 1

120
b1b2

2k122x4� 1
36

b1b2
2k122x2

þ 7
360

b1
3k12k21 þ 1

120
b1

3k12k21x4� 1
36

b1
3k12k21x2

þ 7
360

b1
2b2k12k22 þ

1
120

b1
2b2k12k22x

4� 1
36

b1
2b2k12k22x

2

v2ðxÞ ¼ 7
180

b1
3k11k21 þ 1

60
b1

3k11k21x4� 1
18

b1
3k11k21x2

þ 7
360

b1
2b2k11k22 þ

1
120

b1
2b2k11k22x

4� 1
36

b1
2b2k11k22x

2

þ 7
180

b1
2b2k12k21 þ

1
60

b1
2b2k12k21x

4� 1
18

b1
2b2k12k21x

2

þ 7
360

b1b2
2k12k22 þ 1

120
b1b2

2k12k22x
4� 1

36
b1b2

2k12k22x
2

þ 7
360

b1
3k21k22 þþ 1

120
b1

3k21k22x4� 1
36

b1
3k21k22x2

þ 7
360

b1
2b2k22

2 þ 1
120

b1
2b2k22

2x4� 1
36

b1
2b2k22

2x2
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and so on. Proceeding in this way, the components
were also calculated but for brevity, they are not
listed here.

The used approximate functions of solutions will
be as in Rach et al. (2014), in the following formulas:

Ymþ1ðxÞ ¼
Xm
n¼0

unðxÞ, Zmþ1ðxÞ ¼
Xm
n¼0

vnðxÞ,m � 0:

(46)

The used convenient error remainder functions
will be also as in Rach et al. (2014), in the forms

ER1, nðxÞ ¼ d2

dx2
YnðxÞ þ 2

x
d
dx

YnðxÞ þ f1ðYnðxÞ, ZnðxÞÞ,

ER2, nðxÞ ¼ d2

dx2
ZnðxÞ þ 2

x
d
dx

ZnðxÞ þ f2ðYnðxÞ, ZnðxÞÞ,
(47)

with the maximal error remainder parameters
forms

MER1, n ¼ max
0<x�1

jER1, nðxÞj, MER2, n ¼ max
0<x�1

jER2, nðxÞj,
(48)

4.2. The HAM for solving the absorption of CO2
by the PGE boundary value problem

A model for steady state concentrations of carbon
dioxide CO2 and PGE has been proposed as in Duan
et al. (2015) and Subramaniam et al. (2012). The fol-
lowing system of two second order nonlinear ordin-
ary differential equations representing the two
chemicals must be solved:

u00ðxÞ ¼ a1fðuðxÞ, vðxÞÞ, (49)

v00ðxÞ ¼ a2fðuðxÞ, vðxÞÞ, (50)

where

f ¼ uðxÞvðxÞ
1þ b1uðxÞ þ b2vðxÞ,

(51)

with the following boundary conditions uð0Þ ¼
1, uð1Þ ¼ k, v0ð0Þ ¼ 0 and vð1Þ ¼ 1:

Here u(x) stands for the CO2 concentration and
v(x) is the PGE concentration. The normalized system
parameters are a1, a2, b1 and b2: The carbon dioxide
concentration at catalyst surface is denoted by k
Finally, the dimensionless distance from the centre is
x (Duan et al., 2015).

Adomian (1994), Duan et al. (2015), Biazar,
Babolian, and Islam (2004), have used the Adomian
decomposition method to develop a solution of this
problem. They transform the governing equations
into a system of coupled integral equations. Due to
the nonlinear nature of the problem, Adomian poly-
nomials have to be calculated, which requires large
computational resources.

In the following, we present an approximate solu-
tion of this nonlinear problem using the HAM

(Bataineh et al., 2009; Gabriel, 2016; Liao, 2004;
Wazwaz, 2009). In order to implement this method
to the current system, we will solve the following
system given in Flockerzi and Sundmacher (2011).
So,

uðxÞ ¼ 1þ ðk�1Þx�a1x
ð1
0

ðx
0
fðuðtÞ, vðtÞÞdtdt

þ a1

ðx
0

ðx
0
fðuðtÞ, vðtÞÞdtdt, (52)

vðxÞ ¼ 1�a2

ð1
0

ðx
0
fðuðtÞ, vðtÞÞdtdt

þ a2

ðx
0

ðx
0
fðuðtÞ, vðtÞÞdtdt, (53)

By implementing the HAM to the nonlinear sys-
tem above, the selected zeroth approximations are

u0ðxÞ ¼ 1, (54)

v0ðxÞ ¼ 1, (55)

Consecutively we obtain the following terms by
HAM:

u1ðxÞ ¼ h �ðk � 1Þx � a1x2

2ðb1 þ b2 þ 1Þ þ
a1x

2ðb1 þ b2 þ 1Þ

 !

v1ðxÞ ¼ h
a2

2ðb1 þ b2 þ 1Þ �
a2x2

2ðb1 þ b2 þ 1Þ

 !

and so on. When h ¼ � 1, we get

u1ðxÞ ¼ ð�1þ kÞx� xa1
2ð1þ b1 þ b2Þ

þ x2a1
2ð1þ b1 þ b2Þ

,

v1ðxÞ ¼ � a2
2ð1þ b1 þ b2Þ

þ x2a2
2ð1þ b1 þ b2Þ

,

Also, we get

u2ðxÞ ¼ a1b2
2kx3

6ðb1 þ b2 þ 1Þ3 þ
a1b2kx

3

3ðb1 þ b2 þ 1Þ3

þ a1kx3

6ðb1 þ b2 þ 1Þ3 þ
a1b1kx

3

6ðb1 þ b2 þ 1Þ3

þ a1b1b2kx
3

6ðb1 þ b2 þ 1Þ3 �
a1b2

2kx

6ðb1 þ b2 þ 1Þ3

� a1b2kx

3ðb1 þ b2 þ 1Þ3 �
a1kx

6ðb1 þ b2 þ 1Þ3

� a1b1kx

6ðb1 þ b2 þ 1Þ3 �
a1b1b2kx

6ðb1 þ b2 þ 1Þ3

þ a12x4

24ðb1 þ b2 þ 1Þ3 þ
a12b2x

4

24ðb1 þ b2 þ 1Þ3

þ a1a2x4

24ðb1 þ b2 þ 1Þ3 þ
a1a2b1x

4

24ðb1 þ b2 þ 1Þ3
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� a12x3

12ðb1 þ b2 þ 1Þ3 �
a12b2x

3

12ðb1 þ b2 þ 1Þ3

� a1b2
2x3

6ðb1 þ b2 þ 1Þ3 �
a1b2x

3

3ðb1 þ b2 þ 1Þ3

� a1x3

6ðb1 þ b2 þ 1Þ3 �
a1b1x

3

6ðb1 þ b2 þ 1Þ3

� a1b1b2x
3

6ðb1 þ b2 þ 1Þ3 �
a1a2x2

4ðb1 þ b2 þ 1Þ3

� a1a2b1x
2

4ðb1 þ b2 þ 1Þ3 þ
a12x

24ðb1 þ b2 þ 1Þ3

þ a12b2x

24ðb1 þ b2 þ 1Þ3 þ
5a1a2x

24ðb1 þ b2 þ 1Þ3

þ 5a1a2b1x

24ðb1 þ b2 þ 1Þ3 þ
a1b2

2x

6ðb1 þ b2 þ 1Þ3

þ a1b2x

3ðb1 þ b2 þ 1Þ3 þ
a1x

6ðb1 þ b2 þ 1Þ3

þ a1b1x

6ðb1 þ b2 þ 1Þ3 þ
a1b1b2x

6ðb1 þ b2 þ 1Þ3

v2ðxÞ ¼ a1a2
24ðb1 þ b2 þ 1Þ3 þ

a1a2b2
24ðb1 þ b2 þ 1Þ3

þ 5a22

24ðb1 þ b2 þ 1Þ3 þ
5a22b1

24ðb1 þ b2 þ 1Þ3

þ a2b2
2

6ðb1 þ b2 þ 1Þ3 þ
a2b2

3ðb1 þ b2 þ 1Þ3

þ a2
6ðb1 þ b2 þ 1Þ3 þ

a2b1
6ðb1 þ b2 þ 1Þ3

þ a2b1b2
6ðb1 þ b2 þ 1Þ3 �� a2b2

2k

6ðb1 þ b2 þ 1Þ3

� a2b2k

3ðb1 þ b2 þ 1Þ3 �
a2k

6ðb1 þ b2 þ 1Þ3

� a2b1k

6ðb1 þ b2 þ 1Þ3 �
a2b1b2k

6ðb1 þ b2 þ 1Þ3

þ a2b2
2kx3

6ðb1 þ b2 þ 1Þ3 þ
a2b2kx

3

3ðb1 þ b2 þ 1Þ3

þ a2kx3

6ðb1 þ b2 þ 1Þ3 þ
a2b1kx

3

6ðb1 þ b2 þ 1Þ3

þ a2b1b2kx
3

6ðb1 þ b2 þ 1Þ3 þþ a1a2x4

24ðb1 þ b2 þ 1Þ3

þ a1a2b2x
4

24ðb1 þ b2 þ 1Þ3 þ
a22x4

24ðb1 þ b2 þ 1Þ3

þ a22b1x
4

24ðb1 þ b2 þ 1Þ3 �
a1a2x3

12ðb1 þ b2 þ 1Þ3

� a1a2b2x
3

12ðb1 þ b2 þ 1Þ3 �
a2b2

2x3

6ðb1 þ b2 þ 1Þ3

� a2b2x
3

3ðb1 þ b2 þ 1Þ3 �
a2x3

6ðb1 þ b2 þ 1Þ3

� a2b1x
3

6ðb1 þ b2 þ 1Þ3 �
a2b1b2x

3

6ðb1 þ b2 þ 1Þ3

� a22x2

4ðb1 þ b2 þ 1Þ3 �
a22b1x

2

4ðb1þ b2 þ 1Þ3

and so on. Proceeding in this way, the components
were also calculated but for brevity, they are not
listed here.

The used approximate functions of solutions will
be as in (Wazwaz, 2005). The used convenient error
remainder functions will be also as in Duan et al.
(2015), in the forms

ER1, nðxÞ ¼ d2

dx2
YnðxÞ�a1fðYnðxÞ, ZnðxÞÞ,

ER2, nðxÞ ¼ d2

dx2
ZnðxÞ�a2fðYnðxÞ, ZnðxÞÞ,

(56)

and the maximal error remainder parameters are cal-
culated as in equation (Wazwaz & Rach, 2011).

4.3. HAM convergence properties

4.3.1. Diffusion and reaction processes in por-
ous catalyst
In order to validate the proposed HAM method and
examine the HAM convergence properties, we solve
the problem of diffusion and reaction processes in
porous catalyst using the parameter values sug-
gested by Wazwaz et al. (2014): b1 ¼ 1,b2 ¼ 2, k11 ¼
1, k12 ¼ 2

5 , k21 ¼ 1
2 , and k22 ¼ 1: We will evaluate the

approximate solutions, the error remainder and the
maximal error remainder. Furthermore, MER1, n and
MER2, n are calculated, so that the values of n are
increasing from 1 to 10. In the left panel of Figure 1
we display the convergence curve for MER1, n: The
convergence of MER2, n is similar.

4.4. Absorption of carbon dioxide into phenyl
glycidyl ether

In order to validate the proposed HAM method, we
solve the problem of absorption of carbon dioxide into
phenyl glycidyl ether using the parameter values sug-
gested by Duan et al. (2015): a1 ¼ 1, a2 ¼ 2, b1 ¼
1, b2 ¼ 3 and k ¼ 0:5: We will evaluate the approxi-
mate solutions, the error remainder and the maximal
error remainder. Furthermore, MER1, n and MER2, n are
calculated, so that the values of n are increasing from 1
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to 10. In the right panel of Figure 1 the convergence
curve forMER1, n: The convergence ofMER2, n is similar.

5. Simulations and discussion

5.1. Solution of the catalytic diffusion problem

In Figure 2 we compare concentration profiles for
HAM and BDIM. The parameters used were: b1 ¼ 1,
b2 ¼ 2, k11 ¼ 1, k12 ¼ 2

5 , k21 ¼ 1
2 , k22 ¼ 1:

Looking at HAM results, we observe that solution
obtained using n � 3 are different from the accurate
n¼ 10 solution, while for n � 4 the convergence

profiles do not differ significantly. The BDIM results
have been obtained using different computational
grids. Grids having 21 to 201 equidistantly places
nodes were used. Due to the simple nature of the
problem (diffusion only) and due to the use of quad-
ratic interpolation, we detect virtually no difference
between results obtained on different meshes.

5.2. Solution of absorption of carbon dioxide
into phenyl glycidyl ether

Solution profiles for the absorption of carbon dioxide
into phenyl glycidyl ether are shown in Figure 3. The

Figure 1. Norms MER1, n shown for HAM for n ¼ 1, . . . , 10 for the solution of the diffusion and reaction processes in porous
catalyst problem (left) and the adsorption problem (right). Norms MER2, n exhibit similar characteristics.

Figure 2. Comparison of solutions of the catalytic diffusion problem. u and v concentration profiles are presented for the
HAM (left) and BDIM (right).

Figure 3. Comparison of solutions of the absorption problem. u and v concentration profiles are presented for the HAM (left)
and BDIM (right).
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following parameters were used: a1 ¼ 1, a2 ¼ 2,
b1 ¼ 1, b2 ¼ 3, k ¼ 0:5: In this case, only the n¼ 1
HAM solution show significant difference from the
converged n¼ 10 solution, while all others (n � 2)
are very close to each other. Similarly to the catalytic
diffusion problem, the BDIM is able to capture the
physics of the phenomena using a very coarse mesh
(21 nodes).

5.3. Comparison to Mathematica
NDSOLVE solver

We solved both problems using Mathematica’s
NDSOLVE functions. Please refer to the appendix for

the complete code. In order to asses the difference
in solutions, we calculated the RMS difference
between solution profiles as

RMSðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðu�uNDSOLVEÞ2P ðuNDSOLVEÞ2

s
(57)

In Figure 4 we presented the RMS differences ver-
sus location x, while in Figure 5 average values are
presented. We observe that the RMS error decreases
with increasing n for the HAM method and with
increasing number of nodes for the BDIM method.
Looking at the RMS vs. x profile we see that the
accuracy is approximately constant for all values of
x. Accuracy of solution of the absorption problem is

Figure 4. RMS difference between u and v concentration profiles and the Mathematica NDSLOVE solver. Results for the cata-
lytic diffusion problem are shown in the top panels and results of absorption of carbon dioxide are shown in the bot-
tom panels.

Figure 5. Average RMS difference between u and v concentration profiles and the Mathematica NDSLOVE solver. Results for
HAM are shown in the left panel and results for BDIM are shown in the right panel. Lines marked with CD are the catalytic
diffusion problem and AB stands for absorption of carbon dioxide problem.
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higher than the accuracy for the catalytic diffusion
problem for both methods.

6. Conclusions

In this work, the standard Homotopy analysis
method and the boundary domain integral method
has been developed for the solution of two process
problems in chemical engineering: the simulation
adsorption of carbon dioxide in phenyl glycidyl ether
and simulation of catalytic diffusion reactions in por-
ous catalysts.

We have shown, that the proposed HAM method
features exponential convergence rate and is highly
accurate and efficient. As low as 6 terms are needed
to reach error norms of 10�5: On the contrary, due
to the nonlinearity of problem, the application of
the Adomian decomposition method, which was
proposed by other authors needs the calculation of
the Adomian polynomials.

Additionally, we have shown that the boundary-
domain integral approach is also capable of solving
the same problem very efficiently, using a very
coarse computational mesh (21 nodes).
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Appendix

Mathematica NDSolve numerical solution of the two test
cases was used to obtain concentrations for comparisons
with the developed methods. NDSolve finds a numerical
solution to the ordinary differential equations by adapting
its step size so that the estimated error in the solution is
just within the tolerances specified. We set the
WorkingPrecision to machine precision and the
AccuracyGoal and PrecisionGoal to half of
machine precision.

� Mathematica code the catalytic diffusion problem.
Epsilon was used to avoid the singularity at x¼ 0.

\[Epsilon]¼ 10^-30
NDSolve[fu’’[x] =¼ -2/(x þ\[Epsilon])�u’[x] þ k11�u[x]^2
þ k12�u[x]�v[x],
v’’[x] =¼ -2/(x þ\[Epsilon])�v’[x] þ k21�u[x]^2þ k22�
u[x]�v[x],
u’[0] =¼ 0, u[1] ==\[Beta]1, v’[0] =¼ 0, v[1] ==\[Beta]2g,
fu,vg, fx, 0, 1g]

� Mathematica code for the absorption problem.

NDSolve[fu’’[x] =¼ (\[Alpha]1�u[x]�v[x])/(1 þ\[Beta]1�
u[x] þ\[Beta]2�v[x]),
v’’[x] =¼ (\[Alpha]2�u[x]�v[x])/(1 þ\[Beta]1�u[x] þ\[Beta]
2�v[x]),
u[0] =¼ 1, u[1] =¼ k, v’[0] =¼ 0, v[1] =¼ 1g, fu, vg, fx,
0, 1g]
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