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Abstract

This technical note describes the solution of the Laplace Equation by
the Boundary Element Method applied to each mesh element.

1 Introduction

In order to avoid full matrices of integral values we use the multi-domain BEM
approach. We write the BEM equation for each mesh element separately.

2 Numerical method

The main aspects of the implementation of the numerical method are shown
below.

2.1 Boundary integral equation
The Laplace equation for a scalar field function u(7), ¥ € R? is
V2u(7) = 0. (1)

We seek a solution for u in a domain € R3 with a boundary I' € R? with
function on the boundary
u(r), reTl (2)

or flux on the boundary
o) = V() -ii,  Fer (3)

are prescribed as boundary conditions. Outward pointing normal to the bound-
ary is denoted by 7i.
Boundary integral representation of the Laplace equation (Wrobel [2], Ravnik

[1]) is

c(Du(d) + /P w(F)Vur (9, 7) - dl = /P uw(J,F)Vu(F)-dl  JeT, (4)

-

where 7 is the source point. ¢(J) is the geometric factor defined as

= *do «
= [ T (5)



where « is the inner angle with origin in J. 1f J lies inside of the domain than
c(9) = 1; e(¥) = 1/2, if 9 lies on a smooth boundary. Fundamental solution of
the Laplace equation in 3D is

U*(197F) =T (6)

where 7 = |J — 7.

Using boundary normals, equation (4) may be rewritten by
c(Du(F) + / w(F)Vur (0, 7) - Adl = / (0, F)Vu(F)-7dl  JeTl, (7)
r r

Taking into account the definition of boundary flux in equation (3) we may
furter simplify (7)

c(D)u(d) + /F w(F)Vur(J,7) - 7dl = /F uwt(J,7)q(F)dl Jel, (8)

The integral on the left hand side of (8) may be rewritten using the expression
for the fundamental solution (6)

(Vp — )1y + (ﬂy - y)ny + (ﬂy - y)”y
Amr3 ’

w(F)\Vu*(9,7) - 7t = (9)

where 7 = (x,y, 2), J= Uy, 0y, 0,) and 7 = (ng, ny,n.) and

r= /(00— 22+ (0, — )2 + (9, — )% (10)

2.2 Discretization

In the macro element BEM numerical method, we will solve equation (8) for each
mesh element. We chose hexahedron with quadratic interpolation for function
and linear interpolation for flux. Interpolation of function and flux on each
side of the hexahedron is done using a local coordinate system (£,7). Node
distribution is shown on Figure 2
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Figure 1: Linear interpolation for flux (squares) and quadratic interpolation for
function (circles) over a surface. Left R? space, right local coordinate system

and for flux

B=gE- -2,  Gr=—gE+ -,
bs=gE+DM+3),  ba=—gE- D+ ) (13)

. The geometry of the hexahedron is defined by 8 corner nodes, thus each surface
is defined by 4 nodes (numbers 1,3,5,7 in Figure 2). One may find the location
of flux nodes (a,b,c,d) by the following transformation

Ta Ya Za 9 7 1 7 1 1 2
Ty Yp 2 | i 749 7T 1 | | w3 oys 23 (14)
Te Yo Ze | 64 1 T 49 7 Ts Ys 25
Td Yd Zd 7T 1 7 49 T7 Yr 27

Due to the fact, that the surface is defined by four nodes only, we may interpolate
a location of the surface by

n) = Z@ﬂ?i, y(&m) = Z‘biyu z(&m) = Z‘bm, (15)
where
1 |
=€~ D-1),  B=— €+ )0,
@y = €+ DY, Bi=—1(E— D+ D) (16)

Having interpolation in mind, we may rewrite the integral equation (8)

c(Du() —|—Zut/<pl (9, 7) - #dl’ = th/qﬁt J,7)q(F)dr.  (17)



The integrals are traditionally named

- -,

(9 )u(9) Hi 1 :/Fwﬁu*(ﬁ,f).ﬁdr, - _/@ J.Mq(@dl (18

thus the discrete equation is

2.3 Integration

A Gaussian quadrature algorithm will be used, thus the integrals must be writ-
ten in local coordinate system (§,7):

g /gp (D0 = Sojos Byag)ne + (9y = 3j_y )ny + (9 = S, ®y2)ns
9, = i
Ar[(00 = Yoy ®5)% + (D — Yoy @) + (9 — S5, 9;2)2)3/°
(20)

1
r= / 2 4 2 1 2 1 2200
I Zj:l ®jz;)? + (Vy — Zj:l Djy;)? + (0. — Zj:l ®;2;)?]
(21)
where interpolation functions ¢, ¢, ® are all functions of (§,n) and V5, Vs, Vs, 25, Y5, 25
are known locations of the mesh. Surface element dI" is transformed

= |J|d&dn, (22)

where |J| is the Jacobian determinant defined by:

_ [oyos_ozoy,  ovor osor, owoy oyor,
|J|_\/(8§577 o€an) " agon Tocan) tlagay aean)

Derivatives with respect to local coordinates may be found by derivation of
interpolation functions, i.e.

o o®; Oz 0B, Oy ~— O,
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The unit normal on the surface is calculated by

oz oz
& on
9z 8727
S ¢ an
7= 5 5z (27)
& on
¢ on

When element geometry has a large aspect ratio it is necessary to divide
the integral into part, which are approximately square. The integral in local

coordinate system Lo
|| stemacan (28)

where f(€,n) is the function defined in equation (20) or (21) may be written as
a sum of integrals over surfaces defined by (a;, b;) x (¢;, d;)

/_11 /_11f(£,n)d£dn = Z/ab /d f(& n)dédn. (29)

By defining new variables (&,7)

f_of-a S
§—2bi_az 1 E=a; + 5 (b; — a;) (30)
N TS P
n—2di_6i—l E=c+ 5 (di —¢i) (31)
de = " g (32)
dy =%y ()
we obtain
11
dédn =
[1[1f(§,n) £dn
+ HTl(bi —a;i), ¢ + HTl(di — ¢;))dédn. (34)

i

2.4 Setting up the system of equations

In each hexahedral element there are 26 function nodes on the surface (8 corners,
6 middle of surfaces and 12 on middle of edges) and 24 flux nodes (4 on each
side). In order to set up a system of equations the source point is set in all of
those nodes (244-26=50). Additionally, the source point is set into a node in the
centre of the hexahedron, where the function value may be obtained explicitly
from known boundary values. Thus all in all we have 51 equations for each
element.
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Figure 2: A hexahedron with distribution of nodes: left flux, right function

Since neighbouring elements share nodes and since boundary conditions on
the outer boundaries of the domain are prescribed, we obtain an over determined
system of equations. It is solved in a least squares manner.

Calculation of the free coefficient ¢(). When a rigid body movement is
applied, v = 1, ¢ = 0, we see that the sum of all H matrix elements for one
source point must be equal to 0, thus we may use this fact to calculate c(ﬁ)
If the source point is located on the surface, we know that ¢ = 1/2, also if the
source point is inside of the element then ¢ = 1. Those two are used to check

the accuracy of calculated integrals.

2.5 Numerical examples
2.5.1 Heat transfer

Heat transfer over a square domain is considered. Function is prescribed on two
sides, while ¢ = 0 is prescribed on other four. See Figure 2.5.1 for contours of
the solution.

The second example investidated was heat transfer over a cube with a cubic
empty space inside. On two sides of the cube and on two sides of the empty space
the function was prescribed, on all other sides adiabatic boundary condition was
employed (¢ = 0). See Figure 2.5.1 for contours of the solution.

The accuracy of the calculated function and flux was compared with the
analytical values. A RMS error

RM Serror =

where f; is the calculated value in node 7 and a; is the analytical value in node i,
was calculated. The accuracy of integration was measured using known values
for the free coefficient c.

Table 1 summarizes the different meshes used. Meshes a-h were used to
calculate heat transfer over a cube (left side of Figure 4) , meshes i-k were used



mesh domain Neiem Neg Nunk nit
a| 1x1x1 (0,0,0) x (1,1,1) 1 51 17 6
b| 2x2x2 (0,0,0) x (1,1,1) 8 408 155 32
c| 2x2x2 |(0,0,0)x(1,1072,1) 8 408 155 195
d| 4x4x4 (0,0,0) x (1,1,1) 64 3264 1271 85
e| 4x4x4 |(0,0,0)x (1,10~ 2, 1) 64 3264 1271 | 1033
f| 8x8x8 (0 ,0,0) x (1,1,1) 512 26112 | 10223 | 225
g | 16x16x16 | (0,0,0) x (1,1,1) 4096 | 208896 | 81887 | 436
h|32x32x32] (0,0,0)x(1,1,1) | 32768 | 1671168 | 655295 | 985
i kvk-6 (0,0,0) x (3,3,3) 6 306 106 112
j kvk-48 (0,0,0) x (3,3,3) 48 2448 934 287
k kvk-384 (0,0,0) x (3,3,3) 384 19584 7630 | 522

Table 1: Heat transfer test case. The function is changing linearly along the
x axis. Nejem is the number of hexahedrons, N, is the number of equations,
Nynk 18 the number of unknowns and nit is the number of iterations of the least
squares solver.

for the cube in a cube numerical example (right side of Figure 4).

The main conclusion is that the accuracy of the solution depends on the
accuracy of the calculation of integrals. For elements with large aspect ratio
(meshes ¢ and f), we needed to divide the integration surface in order to achieve
high order of accuracy. This prolonged integration times severely.

Razlage zakaj je natancnost slaba pri mrezi kvk-48 in kvk-384 nimam. Ra-
zlika je edino v obliki heksaedrov, tu so manj podobni pravilnim kvadrom.



mesh | wu source q source | u RMS error | ¢ RMS error
2.0-100" [ 2.0-1071 | 1.3-1071° 9.4-10~1

a

b 2.0-1071% | 2.0-10716 | 4.0.1071° 1.6-107H
c 1.3-107% | 1.2-107" | 1.8-10713 8.1-1071
d 2.0-107% | 21-1076 | 26-10713 1.5-10712
e 1.3-1073 | 1.3-107" | 1.0-107'2 6.3-10710
f 1.9-1071 | 2.1-10716 | 3.4.10°13 9.7-10~12
g 1.9-10715 | 2.7-107 | 86-10713 8.3-107 1
h 1.9-107*% | 1.4-10712 | 2.6-10"" 2.0-10710
i 26-1076 [ 11-1071 | 31.-10713 2.9.1012
j 1.7-107%° | 4.2-107% | 4.5-1074 2.0-1073
k 1.6-1071% | 1.5-10712 3.1-1074 2.5-1071

Table 2: Heat transfer test case. The function is changing linearly along the
x axis. Error values for calculation of integrals when the source point is in u
nodes and in ¢ nodes and RMS error of function and flux.
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Figure 3: Dependence of function and flux RMS errors and integral calculation
errors on the number of degrees of freedom.
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cube in a cube, 48 cells.

Figure 4: Meshes. Left: cube 2 x 2 x 2, right

in a cube. Function on a 8 x 8 x 8 mesh.

Heat transfer

Figure 5



Figure 6: Heat transfer in a cube with a cube inside. Function on a 48 cell
mesh.
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a RMS error b RMS error ¢ RMS error
mesh U q U q U q
Ix1x1 45-107" 1 28-107% [ 1.3-1008 [ 1.3-1072 [ 2.4-10° [ 1.9-1073
2x2x 2 1.3-107% | 2.7-1071* | 3.6-1071 | 3.7-107* | 2.1-1072 | 1.0-1073
4x4x 4 | 47-107 1 1.3-107"% | 1.7-107 | 1.0-107* | 1.7-107% | 4.4-107*
§x8x8 | 47-107"% ] 6.7-107"% | 3.4-107™ | 28.107° | 29-107* | 1.9-107*
16 x 16x 16 | 2.0-10712 | 861071 | 45.107* | 741076 | 6.7-107° | 3.7-107°
32x32x 32 | 25-1071 | 1.3-10710 | 2.5-1071% | 1.9-107% | 1.6-1075 | 9.4-107¢
Table 3: Poisson equation.
solver iterations solver CPU time [s]
mesh a) b) c) a) b) c)
1x1x1 6 9 7 0 0 0
2x2x 2 32 36 33 0 0 0.01
4x4x 4 86 | 109 | 108 0.07 0.09 0.09
8 x8x 8 226 | 279 | 278 2.01 2.46 2.45
16 x 16x 16 | 437 | 894 | 846 | 33.35 68.06 64.41
32 x 32x 32 | 966 | 2661 | 2409 | 612.58 | 1684.59 | 1515.99

Table 4: Poisson equation - B.

3 Poisson equation

Numerical examples
a) equation VZu

= 2, analytical solution u = z2, boundary conditions
w(0,y,2) =0, u(L,y,2) =1, q(x,0,2) = q(x,1,2) = q(z,y,0) = q(z,y,1) = 0.
b) equation V2u = 6z, analytical solution u = 3, boundary conditions
u(07 y? Z) = 07 u(17y7 Z) = 17 q(‘r707 Z) = q(xV ]‘7 Z) = q(x7 y? 0) = q(x7y7 1) = 0'
¢) equation VZu = 1222, analytical solution u = x*, boundary conditions
u(0,y,2) =0, u(l,y,2) =1, q(2,0,2) = q(z,1,2) = q(z,y,0) = q(z,y,1) = 0.
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4 Diffusion advection equation

entry flow

5 vorticity transport eqaution equation

The domain integral, which includes advection and wortex twisting and streatch-
ing terms is

/Q{(aﬁ)ﬁf (@ 6)&} wdQ) (36)

Lets consider only the j component of the vector eqaution (36)

/ @9y~ @ V) furan (37)
Q
Due to the solenidality of the veloctiy and vorticity fields, we may write
(@ V) =V (@v;)  (F-V)w; =V - (fwy) (38)
Using (38) in (37) we have
/ {6 (v — ij)} w*dQ (39)
Q
In order to move the derivetive towards the fundamental solution, the following
algebraic relation come in handy
V - {u* (Bvj — Tw;)} = u*V - (Bv; — Tw;) + (Bv; — Tw;) - Vu*  (40)

Using (40) in (39) we obtain two integrals
/ V- {u"(dv; — vw;)} d2 — / (Wvj — vw;) - Vu*dQ (41)
Q Q

The first integral may be converted to a boundary integral using a Gauss diver-
gence clause, thus

/ﬁ- {u* (@) — Tw;)} dl — / (v — Tw;) - Vu*dQ (42)
r Q

The products of velocity and vorticity field components are interpolated within
elements by

(viw)) =Y @(viw)  (viw;) = > @ (viwy), (43)
l l

where ¢ are 27 domain shape functions.

{Z(waj)l - Z(ijx)l} {/angoldl‘ — /Q 881;:* @fdQ}

l l

+ {Z(vywj)l - Z(vjwy)l} {/Fnygoldl“ — /Q %15 gpfdQ}

l l

; {szwj)z - Z(vjwz)l} { [t~ [ 5 sa?dﬂ} (44)

l l
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Figure 7: Vorticity.

With this, when the matrices are formed, we may sum up the boudnary and
domain integral values. Thus we require only three matrices of integrals for
both advective and twisting and stretching terms.

By prescribing the following veloctiy field ¢ = (yz, 22z, 3zy) and boundary
vorticity values & = (—2z + 3y, —2y, z), we were able to check the vorticity
transport eqaution. The results obtained were analytical for all three vorcitiy
components on every mesh tries, including the 1 x 1 x 1 mesh.

5.1 Couette X

v =1(2,0,0), d = (0,1,0) inflow = 0, outflow = = 1, top z = 1, bottom z = 0,
symmetry walls y =0, y =1
Velocity boundary conditions:

v, inflow and top and bottom walls v, = z, outflow and symetry walls
Ovy /On =0

vy all walls v, =0

v, inflow and top and bottom walls v, = 0, outflow and symetry walls

Ov,/On =0
Vorticity boundary conditions:
w, all walls w, =0

wy inflow and top and bottom walls w, = km, outflow and symetry walls

Owy/On =0

w, all walls w, =0

5.2 Couette Y

v =(0,2,0), J = (0,0,1) inflow y = 0, outflow y = 1, top « = 1, bottom = = 0,
symmetry walls z =0, z =1
Velocity boundary conditions:

v, inflow and top and bottom walls v, = 0, outflow and symetry walls
Ov, /On =0
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vy inflow and top and bottom walls v, = =, outflow and symetry walls

Ovy/On =0
v, all walls v, =0
Vorticity boundary conditions:
w, all walls w, =0
wy all walls w, =0
w, inflow and top and bottom walls w, = km, outflow and symetry walls

Ow,/On =0

5.3 Couette Z

v =1(0,0,y), J =(1,0,0) inflow z = 0, outflow z = 1, top y = 1, bottom y = 0,
symmetry walls x =0, z =1
Velocity boundary conditions:

v, all walls v, =0

vy inflow and top and bottom walls v, = =, outflow and symetry walls
vy /On =0

v, inflow and top and bottom walls v, = 0, outflow and symetry walls
Ov,/On =0

Vorticity boundary conditions:

w, inflow and top and bottom walls w, = km, outflow and symetry walls

Owy/On =0
wy all walls w, =0

w, all walls w, =0
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