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~v − ~ω formulation of N-S
• The velocity-vorticity formulation of Navier-Stokes equations

consists of the kinematics equation and the vorticity transport
equation.

• The kinematics equation is a vector elliptic partial differential
equation of Poisson type and links the velocity and vorticity fields
for every point in space and time. For an incompressible fluid it can
be stated as

∇
2~v + ~∇× ~ω = 0,

where we must bear in mind, that both velocity and vorticity fields
are divergence free.
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~v − ~ω formulation of N-S
• The velocity-vorticity formulation of Navier-Stokes equations

consists of the kinematics equation and the vorticity transport
equation.

• The kinematics equation is a vector elliptic partial differential
equation of Poisson type and links the velocity and vorticity fields
for every point in space and time. For an incompressible fluid it can
be stated as

∇
2~v + ~∇× ~ω = 0,

vorticity; ~ω = ~∇× ~v
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~v − ~ω formulation of N-S
• The kinetic aspect of fluid movement is governed by the vorticity

transport equation. Buoyancy is modelled within the Boussinesq
approximation. Density variations with temperature
ρ(T ) = ρ0[1 − βT (T − T0]) are considered only in the buoyancy
term and defined by the thermal volume expansion coefficient βT

and the temperature difference. Using these assumptions we may
write the vorticity transport equation as:

∂~ω

∂t
+ (~v · ~∇)~ω = (~ω · ~∇)~v +

1

Re
∇

2~ω −
Ra

PrRe2

~∇× T~g
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approximation. Density variations with temperature
ρ(T ) = ρ0[1 − βT (T − T0]) are considered only in the buoyancy
term and defined by the thermal volume expansion coefficient βT

and the temperature difference. Using these assumptions we may
write the vorticity transport equation as:

∂~ω

∂t
+ (~v · ~∇)~ω = (~ω · ~∇)~v +

1

Re
∇

2~ω −
Ra

PrRe2

~∇× T~g

Reynolds number; Re = v0L
ν
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~v − ~ω formulation of N-S
• The kinetic aspect of fluid movement is governed by the vorticity

transport equation. Buoyancy is modelled within the Boussinesq
approximation. Density variations with temperature
ρ(T ) = ρ0[1 − βT (T − T0]) are considered only in the buoyancy
term and defined by the thermal volume expansion coefficient βT

and the temperature difference. Using these assumptions we may
write the vorticity transport equation as:

∂~ω

∂t
+ (~v · ~∇)~ω = (~ω · ~∇)~v +

1

Re
∇

2~ω −
Ra

PrRe2

~∇× T~g

Rayleigh number; Ra = g0βT ∆TW3

ν0α0
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~v − ~ω formulation of N-S
• The kinetic aspect of fluid movement is governed by the vorticity

transport equation. Buoyancy is modelled within the Boussinesq
approximation. Density variations with temperature
ρ(T ) = ρ0[1 − βT (T − T0]) are considered only in the buoyancy
term and defined by the thermal volume expansion coefficient βT

and the temperature difference. Using these assumptions we may
write the vorticity transport equation as:

∂~ω

∂t
+ (~v · ~∇)~ω = (~ω · ~∇)~v +

1

Re
∇

2~ω −
Ra

PrRe2

~∇× T~g

Prandtl number; Pr = ν0/α0
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~v − ~ω formulation of N-S
• We further assume that no internal energy sources are present in

the fluid. We will not deal with high velocity flow of highly viscous
fluid, hence we will neglect irreversible viscous dissipation. With
this, the internal energy conservation law, written with temperature
as the unknown variable, reads as:

∂T

∂t
+ (~v · ~∇)T =

1

RePr
∇

2T.
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Integral form of equations
• The integral form of the kinematics equation reads:

c(~θ)~v(~θ) +

∫

Γ

~v ~∇u⋆
· ~ndΓ =

∫

Γ

~v × (~n × ~∇)u⋆dΓ +

∫

Ω

(~ω × ~∇u⋆)dΩ.
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Integral form of equations
• The integral form of the kinematics equation reads:

c(~θ)~v(~θ) +

∫

Γ

~v ~∇u⋆
· ~ndΓ =

∫

Γ

~v × (~n × ~∇)u⋆dΓ +

∫

Ω

(~ω × ~∇u⋆)dΩ.

~θ is the source or collocation point
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Integral form of equations
• The integral form of the kinematics equation reads:

c(~θ)~v(~θ) +

∫

Γ

~v ~∇u⋆ · ~ndΓ =

∫

Γ

~v × (~n × ~∇)u⋆dΓ +

∫

Ω

(~ω × ~∇u⋆)dΩ.

the fundamental solution for the diffusion operator; u⋆ = 1

4π|~θ−~r|
.
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Integral form of equations
• The integral form of the kinematics equation reads:

c(~θ)~v(~θ) +

∫

Γ

~v ~∇u⋆
· ~ndΓ =

∫

Γ

~v × (~n × ~∇)u⋆dΓ +

∫

Ω

(~ω × ~∇u⋆)dΩ.

• The integral form of the steady vorticity transport equation is:

c(~θ)~ω(~θ)+

∫

Γ

~ω~∇u⋆
·~ndΓ =

∫

Γ

u⋆~qdΓ+Re

∫

Ω

u⋆
{

(~v · ~∇)~ω − (~ω · ~∇)~v
}

dΩ

+
Ra

RePr

∫

Ω

u⋆~∇× T~gdΩ,

• The integral form of the steady energy equation is:

c(~θ)T (~θ) +

∫

Γ

T ~∇u⋆
· ~ndΓ =

∫

Γ

u⋆~qT dΓ + RePr

∫

Ω

u⋆(~v · ~∇)TdΩ
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Numerical Algorithm

Γ

~v

Ω

~ω T

• Considering a domain Ω with boundary Γ we depict the velocity ~v,
vorticity ~ω and temperature T fields.
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Numerical Algorithm

Γ

~v

Ω

~ω T

• The boundary conditions known are Dirichlet or Neumann type for
velocity and temperature fields. Boundary vorticity values are
unknown.
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Numerical Algorithm

Γ

~v

Ω

~ω T

• In each iteration of the nonlinear loop we firstly calculate boundary
vorticity values by solving the kinematics equation using
single-domain BEM approach
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Numerical Algorithm

Γ

~v

Ω

~ω T

• The kinematic equation is solved again by sub-domain BEM for
domain velocities taking into account the newly calculated
boundary vorticity values
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Numerical Algorithm

Γ

~v

Ω

~ω T

• The new velocity field is used to calculate domain temperature
values by solving the energy equation by sub-domain BEM.
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Numerical Algorithm

Γ

~v

Ω

~ω T

• Finally the new domain vorticity values are obtained by solving the
vorticity transport equation using sub-domain BEM.

IABEM, Brescia, September 2011 – p.7/30



Single domain BEM
The integral form of the kinematics equation without derivatives of the
velocity and vorticity fields takes the following form:

c(~θ)~v(~θ) +

∫

Γ

~v ~∇u⋆
· ~ndΓ =

∫

Γ

~v × (~n × ~∇)u⋆dΓ +

∫

Ω

(~ω × ~∇u⋆)dΩ.

• The source (collocation) point ~θ

is set to all nodes on the outer
boundary Γ.

• The resulting linear system of
equations is governed by fully
populated matrices.

Γ

~θ

~n

Ω
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Sub-domain BEM
• The source (collocation) point ~θ

is set to all nodes of each
sub-domain.

• Compatibility conditions
between subdomains are
required.

• The resulting linear system of
equations is over-determined
and governed by sparsely
populated matrices.

Γ

Ω

~θ
~n
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Setting up SLE

number of subdomains Nsd = 8
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Setting up SLE

number of subdomains Nsd = 8
function nodes per subdomain Nsd

u = 8
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Setting up SLE
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function nodes per subdomain Nsd

u = 8
flux nodes per subdomain Nsd

q = 8
explicit nodes per subdomain Nsd
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Setting up SLE

number of subdomains Nsd = 8
function nodes per subdomain Nsd

u = 8
flux nodes per subdomain Nsd

q = 8

total number of function nodes Nu = 38
total number of flux nodes Nq = 46
total number of explicit nodes Nex = 8

explicit nodes per subdomain Nsd
ex = 1
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Setting up SLE

number of subdomains Nsd = 8
function nodes per subdomain Nsd

u = 8
flux nodes per subdomain Nsd

q = 8

total number of function nodes Nu = 38
total number of flux nodes Nq = 46
total number of explicit nodes Nex = 8

explicit nodes per subdomain Nsd
ex = 1

Dirichlet B.C. NDir = 28
number of unknowns Nx = Nu + Nq − NDir = 56
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Setting up SLE

number of subdomains Nsd = 8
function nodes per subdomain Nsd

u = 8
flux nodes per subdomain Nsd

q = 8

total number of function nodes Nu = 38
total number of flux nodes Nq = 46
total number of explicit nodes Nex = 8

explicit nodes per subdomain Nsd
ex = 1

number of unknowns Nx = Nu + Nq − NDir = 56
Dirichlet B.C. NDir = 28

number of equations
all source points Neq = Nsd · (Nsd

u + Nsd
q ) = 128
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Matrix approximation
• Single domain BEM is used to solve for boundary vorticity values.

• Resulting system of linear equations includes fully populated
matrices.

• Domain integral yields matrices which scale as number of
boundary nodes times number of all nodes.

• We approximate the domain matrix in the single domain solution of
the kinematics equation by kernel expansion technique.
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Poisson and kinematics eq.
• The scalar Poisson and the vector kinematics equations

∇2u(~r) = b(~r); ∇2~v + ~∇× ~ω = 0; ~r ∈ Ω,

• Their integral forms include a domain term

c(~θ)u(~θ) +

Z

Γ

u(~r)~n · ~∇u⋆dΓ =

Z

Γ

u⋆ ~∇u(~r) · ~ndΓ −

Z

Ω

b(~r)u⋆dΩ,

c(~θ)~v(~θ) +

Z

Γ

~v ~∇u⋆ · ~ndΓ =

Z

Γ

~v × (~n × ~∇)u⋆dΓ +

Z

Ω

(~ω × ~∇u⋆)dΩ,

where ~θ is the collocation point on the boundary, ~n is the unit normal and

u⋆ = 1/4π|~r − ~θ|

is the fundamental solution of the Laplace equation in 3D.
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• The scalar Poisson and the vector kinematics equations
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• Their integral forms include a domain term

c(~θ)u(~θ) +

Z

Γ

u(~r)~n · ~∇u⋆dΓ =

Z

Γ

u⋆ ~∇u(~r) · ~ndΓ −
R

Ω
b(~r)u⋆dΩ,

c(~θ)~v(~θ) +

Z

Γ

~v ~∇u⋆ · ~ndΓ =

Z

Γ

~v × (~n × ~∇)u⋆dΓ +
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Ω
(~ω × ~∇u⋆)dΩ,

where ~θ is the collocation point on the boundary, ~n is the unit normal and

u⋆ = 1/4π|~r − ~θ|

is the fundamental solution of the Laplace equation in 3D.

IABEM, Brescia, September 2011 – p.12/30



Kernel expansion
• The kernels of domain integrals are written in a spherical harmonics series to

achieve separation of variables

1

4π|~r − ~θ|
=

∞
X

l=0

l
X

m=−l

(−1)m

2l + 1

1

ξl+1
Y −m

l
(θξ, ϕξ)rlY m

l (θr, ϕr),

~∇
1

4π|~r − ~θ|
=

∞
X

l=0

l
X

m=−l

(−1)m

2l + 1

1

ξl+1
Y −m

l
(θξ, ϕξ)

n

lY m
l (θr, ϕr)rl−2~r + rl ~∇Y m

l (θr, ϕr)
o

,

where ~r = (r, ϕr, θr) and ~θ = (ξ, ϕξ, θξ) are written
in spherical coordinate system.

1

4π|~r − ~θ|
=

X

i

Fi(~θ)Gi(~r)

γ

~ξ

~r

~r − ~ξ

Ω

Γ

0
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Kernel expansion
• The kernels of domain integrals are written in a spherical harmonics series to

achieve separation of variables
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Kernel expansion
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Writing u
⋆ in a series

• A matrix block written as a product of two low rank matrices. n is the number of
terms in the kernel expansion series, nb is the number of collocation points and nd is
the number of domain points.

˛

˛

˛

˛

˛

˛

˛

˛

˛

R

u⋆
11 . . .

R

u⋆
1nd

...
. . .

...
R

u⋆
nb1 . . .

R

u⋆
nbnd

˛

˛

˛

˛

˛

˛

˛

˛

˛

≈

˛

˛

˛

˛

˛

˛

˛

˛

˛

F 1
1 F 1

2 F 1
3 . . . F 1

n

...
...

...
. . .

...

F
nb

1
F

nb

2
F

nb

3
. . . F

nb
n

˛

˛

˛

˛

˛

˛

˛

˛

˛

·

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

R

G1
1 . . .

R

G
nd

1
R

G1
2 . . .

R

G
nd

2
R

G1
3 . . .

R

G
nd

3

...
. . .

...
R

G1
n . . .

R

G
nd
n

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛
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Writing u
⋆ in a series

• A matrix block written as a product of two low rank matrices. n is the number of
terms in the kernel expansion series, nb is the number of collocation points and nd is
the number of domain points.
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• Compression is achieved if

nd · nb > 2(n · nb + n · nd) = 2n(nd + nb),

where the factor 2 comes from the fact that F and G are complex values.
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Hierarchical division of the do-
main

• The domain and boundary are cut up in a
recursive hierarchical manner. Only a slice
through a 3D domain is shown in the figure.

• Two trees of clusters are formed. The branches
of the domain tree are clusters of domain
elements. The branches of the boundary tree
are clusters of boundary collocation nodes.

• Finally, by combining branches of both trees,
a boundary-domain tree is formed, whose
branches combine clusters of domain elements
with clusters of boundary nodes.
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Matrix structure -333 nodes
• Matrix structure of a cubic mesh with 333 nodes. Red areas show inadmissible parts

of the matrix (leafs), white areas are admissible leafs obtained using an admissibility
criteria of 10−5. The corresponding boundary-domain tree had 19 levels. The
compression ratio of this matrix representation is 0.167.
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O(n log n)
• Comparison of storage requirements of a full matrix and a compressed matrix. It can

clearly be seen that storage of the compressed matrix grows linearly with the
number of nodes times the base 10 logarithm of n, making our algorithm O(n log n).
This relationship remains the same for a wide range of admissibility criteria (10−3 to
10−7).

nlogn

S
to

ra
ge

[G
B

]

200000 400000
0

0.5

1

1.5

2

full [GB]
eps1e-3
eps1e-4
eps1e-5
eps1e-6
eps1e-7
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Rayleigh-Bénard convection
• The domain was a cubic cavity, where

• the bottom wall was heated to a
constant temperature and

• the top wall cooled to an also
constant but lower temperature.

• the vertical walls of the cavity are
insulated

• no-slip velocity boundary
conditions are applied on all walls

• The temperature difference between
the walls defines the Rayleigh number
for this case.

hot wall

cold wall

on
all
walls

adiabatic
vertical
walls

L

L

~v = 0
L
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Rayleigh-Bénard convection
• Mesh of 203 elements with 413 nodes was used

• Simulation were run with air (Pr = 0.71) as the working fluid and
Rayleigh number values of Ra = 105 and Ra = 106.

• Nondimensional time steps of ∆t = 10−3 and ∆t = 5 · 10−4 were
used.

• During the simulation heat transfer through the top and bottom
walls was measured in terms of Nusselt number value.
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Rayleigh-Bénard convection
• At Rayleigh number Ra = 105 steady state was reached after 600

time steps.
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Rayleigh-Bénard convection
• At Rayleigh number Ra = 106 the flow is unsteady (movie).
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Nusselt number versus time
• Ra = 106
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Nusselt number versus time
• Ra = 106
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Rayleigh-Bénard convection
• A look at the heat flux (Nusselt number) through both walls (left:

top, right: bottom) (movie).
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Application - nanofluids
• The developed 3D BEM viscous flow solver was applied on a

coupled flow and heat transfer problem.

• Natural convection of nanofluids is considered.

• Thermophysical properties of water based nanofluids.

pure water Cu Al2O3 TiO2

cp[J/kgK] 4179 385 765 686.2

ρ[kg/m3] 997.1 8933 3970 4250

k[W/mK] 0.613 400 40 8.9538

β[·10−5K−1] 21 1.67 0.85 0.9

α[·10−7m2/s] 1.47 1163 131.7 30.7
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Nanofluids around a hotstrip
• Geometry of the hotstrip problem and

boundary conditions.

• Two distances of the hotstrip from the
left (x = 0) wall were considered;
d = 0.4H (central position) and
d = 0.5H and d = 0.6H.

• The width of the hotstrip is 0.2H in all
cases. The hotstrip is heated to
T = +0.5, while the walls as x = 0 and
x = H are cooled to T = −0.5. All
other walls are adiabatic, i.e. there is no
temperature flux through them.
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H
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Flow description
• 3D simulation of natural convection around a hotstrip located in the central position

(d = 0.4H).

• The hotstrip heats the surrounding air inducing two main vortices - one on each side
of the hotstrip. At the top of the hotstrip, two smaller vortices are located. They keep
the hot air close to the top of the hotstrip, making heat transfer from the top of the
hotstrip small compared to the heat transfer from the sides of the hotstrip.

• Figures show temperature contours for central placement of the hotstrip.
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Temperature contours
• Temperature contours on the central y = 0.5H plane for natural convection in a

hotstrip located in the centre. Contour values are -0.4(0.1)0.4. Solid line denotes
pure water, dashed line ϕ = 0.1 Cu nanofluid and dotted line ϕ = 0.2 Cu nanofluid.
Left Ra = 103, middle Ra = 104 and right Ra = 105.
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Temperature contours
• Temperature contours on the central y = 0.5H plane for natural convection in a

hotstrip located in the off-centre. Contour values are -0.4(0.1)0.4. Solid line denotes
pure water, dashed line ϕ = 0.1 Cu nanofluid and dotted line ϕ = 0.2 Cu nanofluid.
Left Ra = 103, middle Ra = 104 and right Ra = 105.
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Heat transfer
• Total heat flux transferred from the hotstrip into the fluid presented with Nusselt

number. Hotstrip is located in the centre of the cavity (left) and off-centre (right).
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Conclusions
• We presented a 3D laminar viscous flow and heat transfer solver.

• A combination of single domain BEM and sub-domain BEM was used to solve the
velocity-vorticity formulation of Navier-Stokes equations.

• Domain decomposition makes BEM applicable to 3D viscous flows.

• Application of matrix approximation techniques depends on the nonlinearity of the
problem.

• The algorithm was successfully used to study

• Rayleigh-Bénard convection and

• natural convection of nanofluids in a hotstrip heated enclosure. Steady and
unsteady natural convection was considered.
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