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Abstract

A subdomain boundary element method (BEM) is presented for the solution of
Laplace, Poisson and diffusion advection equations using a continuous quadratic in-
terpolation of function and discontinuous linear interpolation of flux. By employing
compatibility conditions between subdomains an over-determined system of linear
equations is obtained, which is solved in a least squares manner. The method, com-
bined with the single domain BEM, is used to solve laminar viscous flows using
the velocity vorticity formulation of Navier-Stokes equations. The versatility and
accuracy of the method is proven using heat transfer, entry flow, 3D channel flow
and 2D and 3D lid driven cavity test cases.
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1 Introduction

The main advantage of the Boundary Element Method (BEM) is the abil-
ity to solve partial differential equation by solving for boundary unknowns
only, omitting the discretization of the domain. This advantage is lost when
a suitable fundamental solution can not be found and a domain contribution
remains in the integral equation. This happens when solving the Poisson equa-
tion or the vorticity transfer equation. Several procedures have been proposed
to avoid this difficulty, for instance methods based on the expansion of the
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integral kernel (Bebendorf [1]), dual reciprocity method (Jumarhon et al. [2])
or compression of the resulting full matrices (Epplera [3]). We employed the
subdomain method (Popov et al. [4]), in which the domain is discretizised
into subdomains and BEM is applied on each subdomain. The resulting inte-
gral matrices are sparse and as such may be stored efficiently and enable fast
algebraic operations.

In the last decade our research group developed several BEM based numerical
algorithms for the solution of viscous incompressible and compressible, laminar
and turbulent flows by solving the velocity-vorticity formulation of the Navier-
Stokes equations. With the aim of increasing computational grid density and
decreasing computational times the single domain BEM approach has been
coupled by several numerical procedures, such as wavelet compression (Ravnik
et al. [5,6]) and the Finite Element Method (Žunič et al. [7]).

In this work, we are presenting a 3D viscous laminar flow solver which is
based on a combination of single domain BEM and subdomain BEM. In the
subdomain BEM integral equations are written for each subdomain (mesh el-
ement) separately. We use continuous quadratic boundary elements for the
discretization of function and discontinuous linear boundary element for the
discretization of flux. By the use of discontinuous discretization of flux all
flux nodes are within boundary elements where the normal and the flux are
unambiguously defined. The corners and edges, where the normal is not well
defined, are avoided. The singularities of corners and edges were dealt with
special singular shape functions by Ong and Lim [8] and by the use of addi-
tional nodes by Gao and Davies [9]. By the use of a collocation scheme a single
linear equation is written for every function and flux node in every boundary
element. By using compatibility conditions between subdomains, we obtain
an over-determined system of linear equations, which may be solved in a least
squares manner. The governing matrices are sparse and have similar storage
requirements as the finite element method. In the paper we present subdo-
main BEM for the solution of the Laplace, Poisson, diffusion advection and
vorticity transport equations. Ramšak et al. [10] employed a similar approach
for the 3D Laplace equation, but using a lower order interpolation scheme.

The solution of viscous flow using a velocity-vorticity formulation of Navier-
Stokes equations requires an iterative scheme for solution of both velocity and
vorticity fields. The main challenge lies in the determination of boundary vor-
ticity values, which are needed for the solution of the vorticity transport equa-
tion. Several different approaches have been proposed for the determination
of vorticity on the boundary. Daube [11] used an influence matrix technique
to enforce both the continuity equation and the definition of the vorticity
in the treatment of the 2D incompressible Navier-Stokes equations. Liu [12]
recognised that the problem is even more severe when he extended it to three
dimensions. Lo et al. [13] used a differential quadrature method to calculate

2



vorticity from its definition to obtain a solution of a natural convection prob-
lem. We will use single domain BEM solution of the kinematics equation for
determination of boundary vorticity. This approach was introduced by Škerget
et al. [14] in 2D and used coupled by FEM in 3D by Žunič et al. [15].

The rest of the paper is organised as follows: in the second section we intro-
duce the subdomain BEM numerical solution methods for Laplace, Poisson
and diffusion advection equations complete with derivations and numerical
examples. In the third section we combine the newly developed methods with
single domain BEM to solve the Navier-Stokes equations. In the fourth section
viscous laminar flow test cases are presented.

2 Subdomain BEM for the Laplace, Poisson and diffusion advec-

tion equations

With the final goal of solving the velocity-vorticity formulation of Navier-
Stokes equation, we first developed and tested a 3D subdomain BEM for
Laplace, Poisson and diffusion advection equations.

2.1 Solution of the Laplace equation by subdomain BEM

The Laplace equation for a scalar field function u(~r), ~r ∈ R
3 is

∇2u(~r) = 0. (1)

We seek a solution for u in a domain Ω ∈ R
3 with a boundary Γ = ∂Ω ∈ R

2.
The function on the boundary

u(~r), ~r ∈ Γ (2)

or the flux on the boundary

q(~r) = ~∇u(~r) · ~n, ~r ∈ Γ (3)

are prescribed as boundary conditions. Vector normal to the boundary point-
ing out of the domain is denoted by ~n. Boundary integral representation of
the Laplace equation (Wrobel [16], Ravnik [17]) is

c(~ϑ)u(~ϑ) +
∫

Γ
u~∇u⋆ · ~ndΓ =

∫

Γ
u⋆qdΓ (4)
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where ~ϑ is the source or collocation point. c(~ϑ) is the geometric factor defined
as

c(~ϑ) =
∫ α

0

dθ

4π
=

α

4π
, (5)

where α is the inner angle with origin in ~ϑ. If ~ϑ lies inside of the domain
then c(~ϑ) = 1; c(~ϑ) = 1/2, if ~ϑ lies on a smooth boundary. The fundamental
solution of the Laplace equation in 3D is

u⋆ =
1

4π|~ϑ − ~r|
. (6)

In the subdomain BEM numerical method we divide the computational do-
main into mesh elements (subdomains). We write the equation (4) for each
mesh element. By enforcing compatibility conditions between elements we are
able to form an over-determined sparse linear system of equations.

The mesh elements used in this work are hexahedrons. On each face of the
hexahedron (Figure 1) we used continuous quadratic interpolation for function
and discontinuous linear interpolation for flux:

u(ξ, η) =
9
∑

i=1

ϕiui, q(ξ, η) =
4
∑

i=1

φiqi, (7)

where ui are function values in each function node, qi are flux values in flux
nodes and (ξ, η) are local coordinate system axes. The shape functions for
function ϕi are the standard shape functions for a quadratic nine node La-
grangian element, while the shape functions for flux are:

φ1 =
4

9
(ξ −

3

4
)(η −

3

4
), φ2 = −

4

9
(ξ +

3

4
)(η −

3

4
),

φ3 =
4

9
(ξ +

3

4
)(η +

3

4
), φ4 = −

4

9
(ξ −

3

4
)(η +

3

4
). (8)

The geometry of the hexahedron is defined by the 8 corner nodes, thus each
surface is defined by 4 nodes (numbers 1,3,5,7 in Figure 1). One may find the
location of flux nodes (a,b,c,d) by using the following transformation
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All flux nodes are located within boundary elements, none are located at
corners and edges - thus the unit normal and the flux value are unambiguously
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defined in each flux node. Having the shape functions in mind, we may rewrite
the integral equation (4) to obtain

c(~ϑ)u(~ϑ) +
26
∑

i=1

ui

∫

Γ
ϕi

~∇u⋆ · ~ndΓ =
24
∑

i=1

qi

∫

Γ
φiu

⋆dΓ, (10)

where the first sum goes to 26 and the second to 24 since in each hexahedral
mesh element (Figure 2) there are 26 function nodes on the surfaces (8 in
corners, 6 on the middle of surfaces and 12 on the middle of edges) and 24
flux nodes (4 on each side). The integrals are traditionally named as

H i
ϑ,Γ =

∫

Γ
ϕi

~∇u⋆ · ~ndΓ, Gi
ϑ,Γ =

∫

Γ
φiu

⋆dΓ. (11)

and thus the discrete equation is

c(~ϑ)u(~ϑ) +
26
∑

i=1

uiH
i
ϑ,Γ =

24
∑

i=1

qiG
i
ϑ,Γ. (12)

In order to calculate the integrals, a Gaussian quadrature algorithm is used.
The integrals are calculated in local coordinate system via weighted summa-
tion of up to 48 integration points per coordinate axis. In the case of high
aspect ratios of hexahedral elements, the boundary elements are divided into
parts whose aspect ratio is approximately equal to one.

Calculation of the free coefficient c(~ϑ) is preformed indirectly. If we consider
a rigid body movement, u = 1, q = 0, we see that the sum of all H i

ϑ,Γ matrix
elements for one source point must be equal to 0, thus we may use this fact
to calculate c(~ϑ). If the source point is located on the surface, we know that
c = 1/2, also if the source point is inside of the element then c = 1. These two
relationships are used to check the accuracy of the calculated integrals.

In order to set up a system of equations the source point is set in all func-
tion and flux nodes of all mesh elements. Additionally, the source point is set
into a node in the centre of the hexahedron, where the function value may be
obtained explicitly from known boundary values. Thus all in all we have 51
equations for each element. The corresponding integrals are stored in rectan-
gular matrices, which have 51 times the number of elements rows. The [H]
integral matrix has 26 columns, while the [G] matrix has 24 columns. Since
neighbouring elements share nodes and since boundary conditions on the outer
boundaries of the domain are prescribed, we obtain an over-determined system
of equations. The system is sparse. We store the system matrix in compressed
row storage format. The system is solved in a least squares manner (Paige and
Saunders [18]).
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2.1.1 Test cases for the Laplace equation

The validity of programming and the quality of the method was tested on two
heat transfer studies. Firstly, we consider heat transfer over a solid cubic do-
main. Function u is prescribed on two opposite sides, while q = 0 is prescribed
on the other four. The second investigated example was heat transfer over a
solid cube with a cubic empty space inside. On two sides of the cube and on
two sides of the empty space the function was prescribed, on all other sides
adiabatic boundary condition was employed (q = 0).

The accuracy of the calculated function and flux was compared with the an-
alytical values. A RMS error was defined as:

RMSerror =

√

√

√

√

∑

i(fi − ai)2

∑

i a
2
i

, (13)

where fi is the calculated value in node i and ai is the analytical value in node
i. The accuracy of integration was measured using known values for the free
coefficient c (5).

Table 1 summarizes the different meshes used. Meshes a-h were used to cal-
culate heat transfer over a cube, meshes i-j were used for the cube in a cube
numerical example. Meshes b and j are displayed on Figure 3.

Both function solutions are plotted in Figure 4. The accuracy of integrals
and the comparison of calculated solution versus analytical solution is shown
in Table 2. A very high order of accuracy was achieved in all cases. The
main conclusion drawn from this analysis is that the accuracy of the solution
depends on the accuracy of the calculation of integrals. For elements with
large aspect ratio (meshes c and f), we needed to divide the integration surface
in order to achieve high order of accuracy. This prolonged integration times
severely.

The accuracy of the cube in a cube test case is satisfactory, but lower than the
accuracy of the heat transfer in a cube test case. This is due to the fact that
the meshes used in the cube in a cube test case employed heavily distorted
hexahedra, while we used cubes in the heat transfer in a cube test case.

2.2 Solution of the Poisson equation by subdomain BEM

The non-homogenous Laplace equation is known as the Poisson equation. For
a scalar field function u(~r), ~r ∈ R

3 it may be stated as

∇2u(~r) = b(~r), (14)
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where the non-homogenous part b(~r) is defined in the whole domain Ω. Its
integral representation has an additional domain integral compared to the
integral representation of the Laplace equation (4):

c(~ϑ)u(~ϑ) +
∫

Γ
u~∇u⋆ · ~ndΓ =

∫

Γ
u⋆qdΓ +

∫

Ω
u⋆bdΩ. (15)

By using domain shape functions we may interpolate b inside each hexahe-
dra and obtain, similarly to the Laplace equation case, a discrete system of
equations:

c(~ϑ)u(~ϑ) +
26
∑

i=1

uiH
i
ϑ,Γ =

24
∑

i=1

qiG
i
ϑ,Γ +

27
∑

i=1

biB
i
ϑ,Ω, (16)

where the domain integrals are defined as

Bi
ϑ,Ω =

∫

Ω
Φiu

⋆dΩ (17)

and Φi are the domain shape functions. When the source point is set to all
function and flux nodes of all mesh elements, we obtain a linear system of
equations in exactly the same manner as in the Laplace equation case. The
integrals matrix [B] has 51 times the number of elements rows and only 27
columns. Although the domain integral is present in the integral equation,
due to the subdomain approach, we are still dealing with matrix sizes, which
scale linearly with the number of mesh elements. This is not the case in single
domain BEM, where a domain integral requires full matrices, which scale with
the square of the number of nodes in the mesh.

2.2.1 Test cases for the Poisson equation

The following Poisson equations were solved on a unit cube:

a) equation ∇2u = 2, analytical solution u = x2, boundary conditions u(0, y, z) =
0, u(1, y, z) = 1, q(x, 0, z) = q(x, 1, z) = q(x, y, 0) = q(x, y, 1) = 0;

b) equation ∇2u = 6x, analytical solution u = x3, boundary conditions u(0, y, z) =
0, u(1, y, z) = 1, q(x, 0, z) = q(x, 1, z) = q(x, y, 0) = q(x, y, 1) = 0;

c) equation ∇2u = 12x2, analytical solution u = x4, boundary conditions
u(0, y, z) = 0, u(1, y, z) = 1, q(x, 0, z) = q(x, 1, z) = q(x, y, 0) = q(x, y, 1) =
0.

The test cases were examined on a, b, d, f, g and h meshes (see Table 1 for
descriptions). The RMS errors against the analytical solutions are shown in
Table 3, while the CPU times and solver iterations are presented in Table 4.
The subdomain BEM solves the first test case (a) up to machine precision on
all meshes, since our interpolation is high enough. For the other two, the RMS
error quickly diminishes with the increasing mesh density.
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As the size of the system of linear equations increases with increasing mesh
density the number of solver iterations and the CPU time increase as well.
The CPU time was measured on a 3.2Gz Pentium IV processor. The solver
stopping criteria was set to 10−15.

2.3 Solution of the diffusion advection equation by subdomain BEM

The steady state diffusion advection equation is

(~v · ~∇)u =
1

Pe
∇2u, (18)

where we used the fluid (advection) velocity ~v(~r), which has been nondimen-
sionalized by v0. The problem is governed by the Peclet number Pe = v0/α
with diffusivity α. Equation (18) may be written in integral form in the same
manner as the Poisson equation, but with a non-linear non-homogenous part:

c(~ϑ)u(~ϑ) +
∫

Γ
u~∇u⋆ · ~ndΓ =

∫

Γ
u⋆qdΓ + Pe

∫

Ω
u⋆{(~v · ~∇)u}dΩ. (19)

In this work, we consider only incompressible fluids, ~∇·~v = 0, thus the domain
integral may be written in the following form

∫

Ω
u⋆~∇ · (~vu)dΩ. (20)

In order to move the derivative towards the fundamental solution, the following
algebraic relation comes in handy ~∇ · {u∗~vu} = u∗~∇ · (~vu) + ~vu · ~∇u∗. Using
this relationship in (20) as well as the Gauss divergence clause, we write the
final integral form of the diffusion advection equation as

c(~ϑ)u(~ϑ) +
∫

Γ
u~∇u⋆ · ~ndΓ =

∫

Γ
u⋆qdΓ

+Pe
∫

Γ
~n · {u⋆~vu}dΓ − Pe

∫

Ω
(~vu) · ~∇u⋆dΩ. (21)

Each component of the product of velocity and the unknown function is inter-
polated along the boundary and domain elements using shape functions, i.e.
vxu =

∑

i Φi(vxu)i. The following integrals must be calculated:

~Ai
ϑ,Γ =

∫

Γ
ϕi~nu⋆dΓ, ~Di

ϑ,Ω =
∫

Ω
Φi

~∇u⋆dΩ. (22)

The discrete counterpart of equation (21) is given by

c(~ϑ)u(~ϑ)+
26
∑

i=1

uiH
i
ϑ,Γ =

24
∑

i=1

qiG
i
ϑ,Γ+Pe

26
∑

i=1

(~vu)i · ~Ai
ϑ,Γ−Pe

27
∑

i=1

(~vu)i · ~D
i
ϑ,Ω. (23)
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When the source point is set into all function and flux nodes of all mesh
elements, the system is stored and solved in the same manner, which was
described in the Laplace equation case. The advection term and the 3D nature
of the problem requires the calculation of three boundary integrals matrices [ ~A]

and three domain integrals matrices [ ~D]. The number of rows of all matrices
is equal to the number of mesh elements times 51. The number of columns of
the boundary matrix is equal to the number of nodes on the boundary of each
mesh element, i.e. 26 and the number of columns of the domain matrices is
27, i.e. the number of all nodes in each mesh element.

Since the diffusion advection equation is nonlinear, an iterative scheme is
employed to get a converged solution. The integrals depend only on the mesh
geometry, shape functions and the fundamental solution. As such they may
all be calculated prior to the start of the iteration process and used in each
iteration.

2.3.1 Test case for the diffusion advection equation

We tested the subdomain BEM solution of the diffusion advection equation
on an entry flow problem. In an interval x ∈ [0, 1] with a constant velocity
field ~v = (1, 0, 0) the analytical solution of the diffusion advection equation
(18) for function and flux equals

u(x) = 1 −
1 − ePex

1 − ePe
, du/dx = Pe

ePex

1 − ePe
. (24)

We solved the problem on a coarse mesh with 10 × 1 × 1 elements and on a
fine mesh with 100 × 1 × 1 elements. The elements in the coarse mesh were
concentrated towards the high flux region (x = 1). Function was prescribed at
x = 0 and x = 1, while q = 0 was imposed on all other walls. The results of
simulations for Peclet number values Pe = 1, Pe = 10 and Pe = 20 are shown
in Table 5. We are comparing function value in the middle of the domain and
flux at x = 1. The results obtained on both meshes are in good agreement
with the analytical solution. Meshes with concentrated elements give better
results than meshes with an equal number of equidistant elements, due to the
fact that concentrated elements meshes have more nodes in the high gradient
region.

3 Navier-Stokes equations in velocity-vorticity formulation

In this paper we assume an incompressible viscous Newtonian fluid with con-
stant material properties. Vorticity ~ω is defined as the curl of the velocity
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~ω = ~∇× ~v. Both velocity and vorticity fields are divergence free. The viscous
fluid flow is governed by the kinematics equation

∇2~v + ~∇× ~ω = 0, (25)

which is a vector elliptic partial differential equation of Poisson type and
links the velocity and vorticity fields for every point in space and time. It
is equivalent to the Biot-Savart law, which connects the electric current and
magnetic field density. The same connection that links the electric current and
magnetic field density links velocity and vorticity fields in fluid flow (Lundgren
and Koumoutsakos [19]). The kinetic aspect of fluid movement is governed by
the vorticity transport equation, written in non-dimensional form:

∂~ω

∂t
+ (~v · ~∇)~ω = (~ω · ~∇)~v +

1

Re
∇2~ω, (26)

with the Reynolds number denoted by Re. Equation (26) equates the advective
vorticity transport on the left hand side with the vortex twisting and stretching
term and the diffusion term on the right hand side. In this paper we are dealing
with steady flows only, which makes ∂~ω/∂t = 0. The system of equations (25)
and (26) is nonlinear. The unknowns are the velocity and vorticity fields. Our
solution algorithm is presented below:

• calculate integrals
• begin nonlinear loop

- calculate boundary vorticity values by solving the kinematics equation by
single domain BEM

- calculate domain velocity values by solving the kinematics equation by
subdomain BEM

- solve vorticity transport equation for domain vorticity values using the
boundary values from the solution of the kinematics equation by subdo-
main BEM

- check convergence - repeat steps in the nonlinear loop until convergence
is achieved

• end nonlinear loop
• output results

The boundary conditions required to obtain the solution are prescribed veloc-
ity or velocity flux on the boundary. The boundary conditions for the vorticity
transport equation are calculated as a part of the algorithm using single do-
main BEM. Alternatively, if boundary vorticity or flux is known on a part of
the boundary, it may be prescribed, and thus the single domain BEM is not
used to calculate boundary values.

10



3.1 Solution of the steady vorticity transport equation by subdomain BEM

The integral form of the steady vorticity transport equation (26) is

c(~ϑ)~ω(~ϑ) +
∫

Γ
~ω~∇u⋆ · ~ndΓ =

∫

Γ
u⋆~qdΓ

+Re
∫

Ω
u⋆
{

(~v · ~∇)~ω − (~ω · ~∇)~v
}

dΩ, (27)

where the domain integral now includes the advection and vortex twisting and
stretching terms. ~q is the vorticity flux vector qj = ~n · ~∇ωj. Let us consider
only the jth component of the vector equation (27) and look at the domain
integral alone:

∫

Ω

{

(~v · ~∇)ωj − (~ω · ~∇)vj

}

u⋆dΩ. (28)

Due to the solenoidality of the velocity and vorticity fields, we may use (~ω ·
~∇)vj = ~∇ · (~ωvj) and (~v · ~∇)ωj = ~∇ · (~vωj) to transform eqaution (28) into

∫

Ω

{

~∇ · (~vωj − ~ωvj)
}

u⋆dΩ. (29)

In order to move the derivative towards the fundamental solution, the following
algebraic relation ~∇ · {u∗(~vωj − ~ωvj)} = u∗~∇ · (~vωj − ~ωvj) + (~vωj − ~ωvj) · ~∇u∗

is used to obtain two integrals:
∫

Ω

~∇ · {u∗(~vωj − ~ωvj)} dΩ −
∫

Ω
(~vωj − ~ωvj) · ~∇u⋆dΩ (30)

The first integral may be converted to a boundary integral using a Gauss diver-
gence clause. Thus the final integral form of the vorticity transport equation
(27) for jth vorticity component may be stated as

c(~ϑ)ωj(~ϑ) +
∫

Γ
ωj

~∇u∗ · ~ndΓ =
∫

Γ
u∗qjdΓ

+Re
∫

Γ
~n · {u∗(~vωj − ~ωvj)} dΓ − Re

∫

Ω
(~vωj − ~ωvj) · ~∇u∗dΩ. (31)

The products of velocity and vorticity field components are interpolated within
elements using shape functions. With this, the integrals required to solve the
vorticity transport equation are the same as the integrals for the diffusion
advection equation (21). We may write the discrete equation as

c(~ϑ)u(~ϑ) +
26
∑

i=1

uiH
i
ϑ,Γ =

24
∑

i=1

qiG
i
ϑ,Γ

+Re
26
∑

i=1

(~vωj − ~ωvj)i · ~Ai
ϑ,Γ − Re

27
∑

i=1

(~vωj − ~ωvj)i · ~Di
ϑ,Ω. (32)
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The vortex twisting and stretching term does not require any additional in-
tegration or storage space. It does, naturally, affect the nonlinearity of the
problem.

3.2 Solution of the kinematics equation for domain velocity by subdomain

BEM

The integral form of the kinematics equation without derivatives of the velocity
and vorticity fields takes the following form (for derivation, see Ravnik et al.
[6] eqns. (19)-(24)):

c(~ϑ)~v(~ϑ) +
∫

Γ
~v~∇u⋆ · ~ndΓ =

∫

Γ
~v × (~n × ~∇)u⋆dΓ +

∫

Ω
(~ω × ~∇u⋆)dΩ. (33)

The boundary integrals on the left hand side are stored in the [H] matrix,

the domain integrals on the right hand side are the [ ~D] matrices. We define

the boundary integral on the right hand side as [ ~H t] integrals in the following
manner:

~H t
ϑ,Γ,i =

∫

Γ
ϕi(~n × ~∇)u⋆dΓ. (34)

Since there are no fluxes in the equation, the source point is set to function
nodes only. Let vectors of nodal values of field functions be denoted by curly
brackets. The discrete kinematics equation written in component wise form is:

[H]{vx} = [H t
z]{vy} − [H t

y]{vz} + [Dz]{ωy} − [Dy]{ωz}, (35)

[H]{vy} = [H t
x]{vz} − [H t

z]{vx} − [Dz]{ωx} + [Dx]{ωz}, (36)

[H]{vz} = [H t
y]{vx} − [H t

x]{vy} + [Dy]{ωx} − [Dx]{ωy}. (37)

Using [H] as the system matrix the three linear systems of equations must
be solved repeatedly, until convergence is achieved. This is due to the fact
that the right hand sides depend on velocity as well. No under-relaxation was
needed in our simulations. We notice, that the [H] and [ ~D] integral matrices
are needed for the vorticity transport equation as well and are thus used twice.

All in all the subdomain BEM solution of the kinematics and vorticity trans-
port equations requires the calculation and storage of [H], [G], [ ~A], [ ~H t] and

[ ~D] matrices. The total number of integrals that must be calculated and stored
is 12540 times the number of mesh elements. In comparison with the single
domain BEM this is a very small number. The single domain BEM would re-
quire at least three matrices with the number of elements equal to the number
of nodes squared. On a cubic mesh with 10×10×10 elements with 9261 nodes,
the ratio between subdomain BEM storage requirements and single domain
BEM storage requirements would be approximately 0.04 and on a 20×20×20
mesh it would be approximately 0.007.
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3.3 Solution of the kinematics equation for boundary vorticity by single do-

main BEM

In order to use the kinematics equation to obtain boundary vorticity values,
we must rewrite the system of equations (35) - (37) in a tangential form by
multiplying the system with a normal in the source point. This approach has
been proposed by Škerget and used in 2D by Škerget et al. [14] and in 3D by
Žunič et al. [15]. We employed the same procedure as Žunič et al. [15] with the
difference of using the second order shape functions, while they used a first
order interpolation scheme.

4 Test cases for viscous laminar flow

The proposed numerical scheme was tested on three test cases with known
analytical or benchmark solutions.

4.1 2D lid driven cavity

In order to ascertain that the 3D code is capable of yielding 2D results, we have
used it to simulate 2D lid driven cavity flow. The simulation was preformed
in a block domain (0, 0, 0) × (1, 0.05, 1). The six walls were named as follows:
left wall x = 0, right x = 1, top z = 1, bottom z = 0, symmetry walls y = 0,
y = 0.05. The velocity boundary conditions were: top wall vx = 1, bottom,
left and right walls vx = 0, symetry walls ∂vx/∂n = 0. The y component of
velocity was set to zero on all walls, vy = 0. The z component was set to zero
on the top, bottom, left and right walls vz = 0, while on the symmetry walls
its normal derivative was set to zero ∂vz/∂n = 0. Vorticity ωx and ωz were set
to zero on all walls. Boundary vorticity ωy was calculated using single domain
BEM from the kinematics equation on all walls, except for the symmetry walls,
where ∂ωy/∂n = 0. The boundary conditions are sketched on Figure 5.

The simulation was preformed on a mesh with 20× 1× 20 elements, having in
total 5043 nodes. The elements were concentrated towards the corners in the
x − z plane. The ratio of the shortest element width to the longest elements
width was 7. The velocity profiles and vectors for Re = 400 are shown on
Figure 6. We observe good agreement between our results and benchmark
results of Ghia et al. [20].
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4.2 3D channel flow

Flow in a 3D channel with a rectangular cross-section has an analytical solu-
tion. The viscous fluid flows in a laminar fashion in positive x direction. The
domain extends infinitely in x direction and in y−z plane from (0, 0)×(Ly, Lz).
The analytical velocity profile (Chen [21]) is

vx = −
4L2

y

µπ3

dpm

dx
·

·
∞
∑

n=1,3,...

(−1)(n−1)/2

n3

[

1 −
cosh(nπ(y − Ly/2)/Ly)

cosh(nπLz/2Ly)

]

cos

(

nπ(z − Lz/2)

Ly

)

,

dpm

dx
=

12µvx

L2
z



1 −
192

π5

Lz

Ly

∞
∑

n=1,3,...

(

1

n5
tanh

(

nπLy

2Lz

))





−1

.(38)

We simulated flow in a square channel, Ly = Lz = 1 in domains of different
lengths Lx. The domain extents were (0, 0, 0)× (Lx, 1, 1), where inflow was at
x = 0, outflow x = Lx, top wall z = 1, bottom z = 0, front wall y = 0 and
back wall at y = 1.

An uniform velocity profile is prescribed at the inflow vx = vx = 1. The walls of
the channel have non-slip velocity boundary conditions. At the outflow normal
derivatives of all velocity components are prescribed as zero. Boundary values
of vorticity are obtained by solving the kinematics equation by single domain
BEM on all walls except, ωx = 0 at inflow, ∂ωx/∂n = 0 at outflow, ωy = 0
on front and back walls and ωz = 0 on top and bottom walls. The boundary
conditions are sketched on Figure 5.

To do the simulation, we used a mesh with 123 elements having in total 253

nodes. The elements were concentrated towards the four corners in y−z plane.
The ratio between the width of the smallest and largest elements was 27. In
Figure 7 we plotted the velocity and vorticity profiles against the height of
the channel. We observe good agreement with analytical solution given in
equation (38). The Figure 7 also displays velocity vectors on the inflow and
outflow planes as well as vx contours.

4.3 3D lid driven cavity

Flow in a 3D lid driven cavity is one of the standard benchmark test cases
used in development of flow solvers. The domain as well as the boundary con-
ditions is unambiguously defined and do not change with the Reynolds num-
ber. The flow exhibits a wide variety of phenomena, such as: eddies, complex
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three-dimensional patterns and instabilities (Shankar and Deshpande [22]).
The research of lid driven cavity flow started with the observations of Kos-
eff and Street [23], who were able to observe the inherent 3D nature of flow
phenomena in the cavity.

The simulation was preformed on a unit cube (0, 0, 0)×(1, 1, 1). We named the
walls in the following manner: left wall x = 0, right x = 1, top z = 1, bottom
z = 0, front y = 0 and back y = 1. Non slip velocity boundary conditions
are employed on all wall except the top wall, where a constant velocity in
x direction is prescribed ~v = (1, 0, 0). Dirichlet type boundary conditions are
used for the vorticity transport equation. Vorticity on the boundary is obtained
by the solution of the kinematics equation for all directions and walls, except
for ωx = 0 on left and right walls, ωy = 0 on front and back walls and ωz = 0
on top and bottom walls. The boundary conditions are sketched on Figure 5.

Simulations were run on meshes of 83 elements with 4913 nodes, 103 elements
with 9261 nodes and 123 elements with 15625 nodes. The elements were con-
centrated towards the eight corners. The Reynolds number for this test case
is defined with the length of cavity’s edge and the top wall velocity. We ran
simulations at Re = 100, Re = 400 and Re = 1000.

The moving lid induces a primary vortex inside of the cavity. The size of the
vortex increases with Reynolds number. Secondary vortices appear in the cor-
ners of the cavity, their position and strength changing with Reynolds number.
We compared velocity profiles within the cavity in the y = 0.5 plane with the
results of Yang et al. [24]. Figure 8 shows good agreement for Re = 100,
Re = 400 on all meshes, while Re = 1000 profiles are in good agreement with
the reference only on the dense mesh. The high Reynolds number induces high
gradients, which can only be described correctly on a dense mesh. In order to
examine the flow structure within the cavity, we plotted iso-surfaces of veloc-
ity |~v| = 0.13 on Figure 9 and iso-surfaces of vorticity |~ω| = 1 on Figure 10 for
all three Reynolds numbers. The growth of the primary vortex with Reynolds
number is evident. Along with the primary vortex the regions of high vorticity
are also expanding.

5 Conclusions

We developed a 3D subdomain boundary element method based on the contin-
uous quadratic interpolation of function and discontinuous linear interpolation
of flux. Using discontinuous boundary elements for flux enabled us to avoid the
undefined flux values in the corners and edges. The resulting over-determined
system of linear equations was solved in a least squares manner. The accuracy
and versatility of the method was shown by solving the Laplace, Poisson and
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diffusion advection equations.

By combining the subdomain BEM with the single domain BEM we are able to
solve velocity - vorticity formulation of Navier-Stokes equations and simulate
viscous laminar flow in 3D. The method was successfully tested on 3D channel
flow and flow in a 3D lid driven cavity up to Reynolds number Re = 1000.

In the near future we are planning to expand the method towards time depen-
dent problems using a time dependent fundamental solution. The expansion
of the solver to tackle coupled flow and heat transfer problems is under devel-
opment. It requires a solution of the energy equation, which is of a diffusion
advection type and an addition of a coupling term in the vorticity transport
equation. Our final goal is the simulation of turbulent flows.
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Fig. 1. A boundary element shown with nodes for discontinuous linear interpolation
for flux (squares) and nodes for continuous quadratic interpolation for function
(circles). Cartesian R

3 space is shown on the left, local coordinate system on the
right.

Fig. 2. A hexahedral mesh element with distribution of nodes: (left) nodes for in-
terpolation of flux, (right) nodes for interpolation of function.
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Fig. 3. Meshes used in the heat transfer test cases for the Laplace equation. Left:
heat transfer in a solid cube (mesh b; 2 × 2 × 2 elements); right: heat transfer in a
solid cube with a cubic empty space inside (mesh j; 48 elements).
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Fig. 5. Boundary conditions for the 2D lid driven cavity test case (left), 3D channel
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Table 1
Description of meshes used in test cases for the Laplace and Poisson equations;
Nelem is the number of hexahedrons, Neq is the number of equations, Nunk is the
number of unknowns.

mesh domain Nelem Neq Nunk

a 1 × 1 × 1 (0, 0, 0) × (1, 1, 1) 1 51 17

b 2 × 2 × 2 (0, 0, 0) × (1, 1, 1) 8 408 155

c 2 × 2 × 2 (0, 0, 0) × (1, 10−2, 1) 8 408 155

d 4 × 4 × 4 (0, 0, 0) × (1, 1, 1) 64 3264 1271

e 4 × 4 × 4 (0, 0, 0) × (1, 10−2, 1) 64 3264 1271

f 8 × 8 × 8 (0, 0, 0) × (1, 1, 1) 512 26112 10223

g 16 × 16 × 16 (0, 0, 0) × (1, 1, 1) 4096 208896 81887

h 32 × 32 × 32 (0, 0, 0) × (1, 1, 1) 32768 1671168 655295

i kvk-6 (0, 0, 0) × (3, 3, 3) 6 306 106

j kvk-48 (0, 0, 0) × (3, 3, 3) 48 2448 934

Table 2
Heat transfer test cases of the Laplace equation. Error values for calculation of
integrals when the source point is in u nodes and in q nodes and RMS error of
function and flux. Nit is the number of iterations of the least squares solver.

mesh u source q source u RMS error q RMS error nit

a 2.0 · 10−15 2.0 · 10−16 1.3 · 10−15 9.4 · 10−15 6

b 2.0 · 10−15 2.0 · 10−16 4.0 · 10−15 1.6 · 10−14 32

c 1.3 · 10−13 1.2 · 10−11 1.8 · 10−13 8.1 · 10−11 195

d 2.0 · 10−15 2.1 · 10−16 2.6 · 10−13 1.5 · 10−12 85

e 1.3 · 10−13 1.3 · 10−11 1.0 · 10−12 6.3 · 10−10 1033

f 1.9 · 10−15 2.1 · 10−16 3.4 · 10−13 9.7 · 10−12 225

g 1.9 · 10−15 2.7 · 10−16 8.6 · 10−13 8.3 · 10−11 436

h 1.9 · 10−15 1.4 · 10−12 2.6 · 10−11 2.0 · 10−10 985

i 2.6 · 10−16 1.1 · 10−11 3.1 · 10−13 2.9 · 10−12 112

j 1.7 · 10−15 4.2 · 10−14 4.5 · 10−4 2.0 · 10−3 287
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Table 3
Function and flux RMS errors of the Poisson equation test cases: (a) u = x2, (b)
u = x3 and (c) u = x4.

mesh (a) RMS error (b) RMS error (c) RMS error

u q u q u q

a 1 × 1× 1 4.5 · 10−14 2.8 · 10−14 1.3 · 10−13 1.3 · 10−3 2.4 · 100 1.9 · 10−3

b 2 × 2× 2 1.3 · 10−14 2.7 · 10−14 3.6 · 10−14 3.7 · 10−4 2.1 · 10−2 1.0 · 10−3

d 4 × 4× 4 4.7 · 10−13 1.3 · 10−12 1.7 · 10−14 1.0 · 10−4 1.7 · 10−3 4.4 · 10−4

f 8 × 8× 8 4.7 · 10−13 6.7 · 10−12 3.4 · 10−14 2.8 · 10−5 2.9 · 10−4 1.9 · 10−4

g 16 × 16× 16 2.0 · 10−12 8.6 · 10−11 4.5 · 10−14 7.4 · 10−6 6.7 · 10−5 3.7 · 10−5

h 32 × 32× 32 2.5 · 10−11 1.3 · 10−10 2.5 · 10−13 1.9 · 10−6 1.6 · 10−5 9.4 · 10−6

Table 4
CPU times and solver iterations for the Poisson equation test cases: (a) u = x2, (b)
u = x3 and (c) u = x4.

mesh solver iterations solver CPU time [s]

(a) (b) (c) (a) (b) (c)

a 1 × 1× 1 6 9 7 6 0.01 60.01 60.01

b 2 × 2× 2 32 36 33 60.01 60.01 0.01

d 4 × 4× 4 86 109 108 0.07 0.09 0.09

f 8 × 8× 8 226 279 278 2.01 2.46 2.45

g 16 × 16× 16 437 894 846 33.35 68.06 64.41

h 32 × 32× 32 966 2661 2409 612.58 1684.59 1515.99

Table 5
Entry flow test case for diffusion advection equation. Difference between the subdo-
main BEM solution and the analytical solution is shown for different Peclet numbers
Pe. R is the ratio between the longest and the shortest element in the mesh. Ele-
ments were concentrated towards x = 1.

Pe mesh R |u(1
2) − uanalytical| |q(1) − qanalytical|

1 10 × 1 × 1 1 3.7 · 10−4 1.9 · 10−3

1 10 × 1 × 1 7 2.2 · 10−4 1.1 · 10−4

10 10 × 1 × 1 1 1.2 · 10−4 1.9 · 10−2

10 10 × 1 × 1 7 2.7 · 10−4 7.9 · 10−4

10 100 × 1 × 1 1 1.1 · 10−7 4.3 · 10−4

20 100 × 1 × 1 1 1.2 · 10−6 2.8 · 10−4
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